

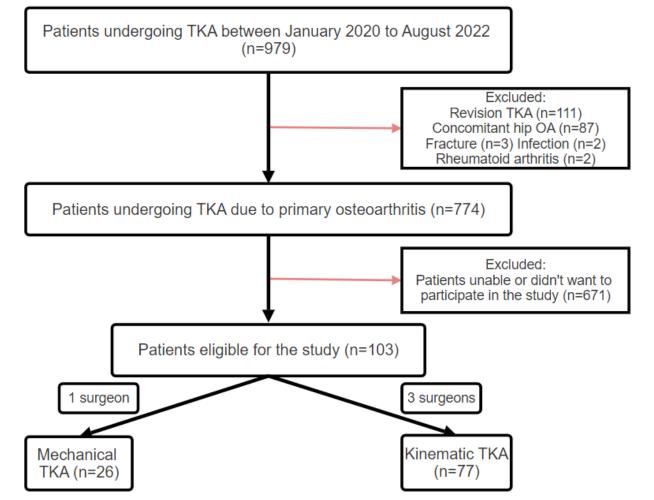
Better Short-Term Outcomes in Total Knee Arthroplasty with Kinematic alignment than Mechanical Technique

Ofir Vinograd, MD
Netanel Steinberg, MD
Ilan Y. Mitchnik, MD
Dana Avraham, MD
Yaron Bar-Ziv, MD
Noam Shohat, MD

TKA is a prevalent and efficient surgical procedure for treating knee OA. 2 main techniques – Mechanical alignment (mTKA) and Kinematic alignment (kTKA).

- Equivalent¹ or slightly better² results to kTKA in the medium-long term.
- Short term results are lacking.
- Immediate and short-term postop pain limiting factor.

- Courtney PM, Lee GC. Early Outcomes of Kinematic Alignment in Primary Total Knee Arthroplasty: A Meta-Analysis of the Literature. J
- Arthroplasty. 2017;32(6):2028-2032.e1. doi:10.1016/J.ARTH.2017.02.041
 Shekhar A, Dungy D, Stewart SL, Jamali AA. Patient-Reported Outcomes of Kinematic vs Mechanical Alignment in Total Knee Arthroplasty: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arthroplast today. 2023;21. doi:10.1016/J.ARTD.2023.101127


Study objective

To assess whether kinematic TKA has better short-

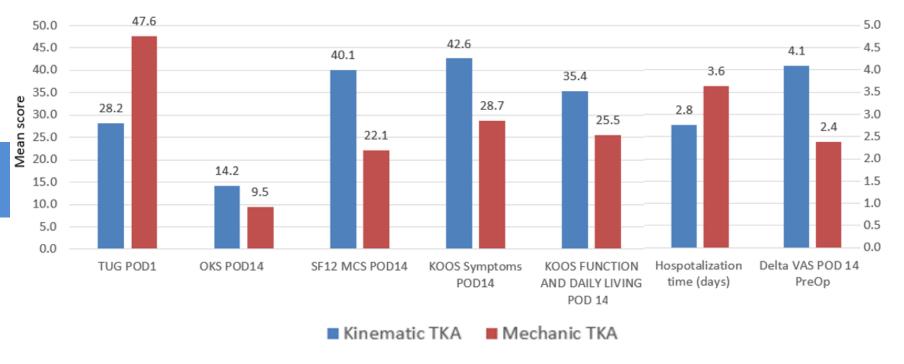
term outcomes compared to mechanical TKA

Study Population Build-up

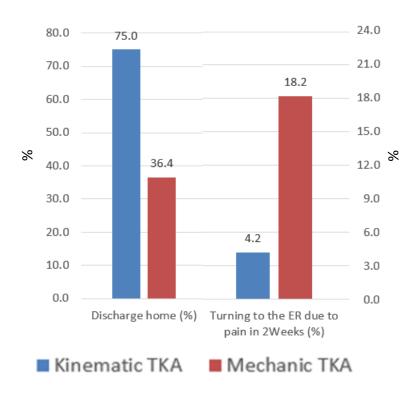
Study design

Prospective collection of data. Randomization to a day.

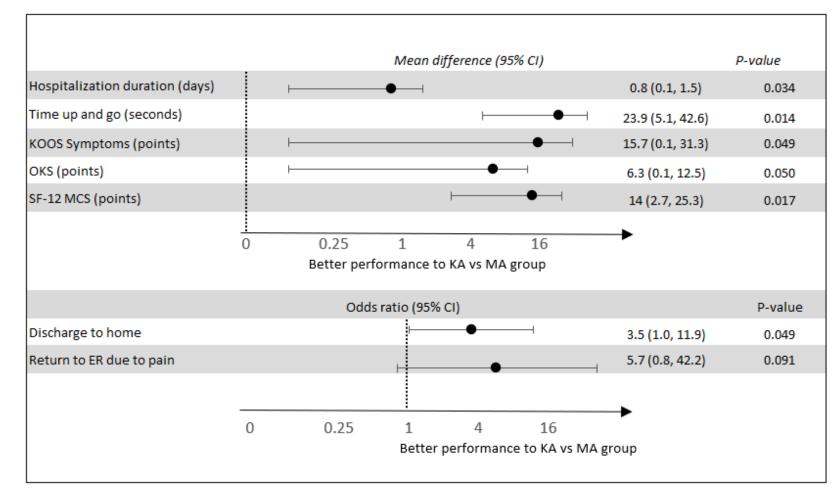
Variables:


- Baseline characteristics from patient records.
- Preoperative PROM's (VAS, KOOS, OKS, FJS, SF-12) and functional performance (TUG, stairs).
- POD 1 TUG, VAS.
- POD 14 same as preoperative.
- Statistical analyses:
 - Univariate Mann-Whitney, Chi-square.
 - Multivariate Linear and logistic regressions.

Baseline demographic and clinical characteristics of the study population


		Kinematic TKA (N=77)	Mechanical TKA (N=26)	P-value
AGE, years; mean±SD		68±8.6	71±7.6	0.312
Sex, female; %		62.3	65.4	0.781
BMI, kg/m2; mean±SD		31.83±6.8	31.5±5.4	0.835
Side operated, Left; %		45.0	63.6	0.135
Smoker; %		11.7	11.5	0.984
ASA; %	1	3.0	4.5	0.944
	2	48.5	45.5	
	3	48.5	50.0	
CCI; %	no or mild	32.4	22.7	0.652
	moderate	55.9	68.2	
	severe	11.8	9.1	
Preoperative VAS; mean±SD		8.32±1.45	8.54±1.24	0.673
Preoperative Time Up and, seconds, mean±3D		19.48±9.37	23.68±10.58	0.064
Preoperative Stairs climb, seconds; mean±SD		29.91±21.42	46.01±23.75	0.003
Preoperative OKS , mean±SD		16.4417.66	14.92±7.23	0.436
Preoperative SF12 PCS ; mean±SD		27.88±7.85	27.59±6.44	0.973
Preoperative SF12 MCS; mean±SD		47.04±12.59	43.03±9.06	0.129
Preoperative KOOS Sympotms; mean±SD		47.04±12.59	43.03±9.06	0.077
Preoperative KOOS Pain; mean±SD		36.83±18.85	31.47±15.43	0.194
Preoperative KOOS Function and Daily Living; mean±SD		38.17±18.25	31.16±14.42	0.103
Preoperative KOOS Quality of Life; mean±SD		17.81±14.04	15.29±13.28	0.553
Preoperative KOOS Overall; mean±SD		31.35±12.97	26.13±11.19	0.068
Preoperative KOOS Function Sports Recreational Activities Subtotal; mean±SD		15.26±19.49	11.73±19.44	0.229
Preoperative FJS; mean±SD		7.95±9.55	5.58±9.20	0.088

Univariate analysis comparing kTKA and mTKA for outcome measures



Pv for all outcomes ≤0.05

Univariate analysis comparing kTKA and mTKA for outcome measures

Multivariate regression analysis for hospitalization and post discharge variables

- Relatively small number of patients in mTKA group.
- Surgeon dependent.
- Missing data points <10%.

- Kinematic TKA correlates with better POD 1 TUG and admission duration.
- No differences were found in analgesic use.
- PROM's are better with kTKA in POD 14, higher than MCID¹. ◀

 Migliorini F, Maffulli N, Schäfer L, Simeone F, Bell A, Hofmann UK. Minimal clinically important difference (MCID), substantial clinical benefit (SCB), and patient-acceptable symptom state (PASS) in patients who have undergone total knee arthroplasty: a systematic review. Knee Surg Relat Res. 2024;36(1). doi:10.1186/S43019-024-00210-Z

References

- [1] Jang S, Lee K, Ju JH. Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int J Mol Sci 2021;22:1–15. https://doi.org/10.3390/IJMS22052619.
- [2] Carr AJ, Robertsson O, Graves S, et al. Knee replacement. Lancet (London, England) 2012;379:1331–40. https://doi.org/10.1016/S0140-6736(11)60752-6.
- [3] Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007;89:780–5. https://doi.org/10.2106/JBJS.F.00222.
- [4] Chang JS, Haddad FS. Long-term survivorship of hip and knee arthroplasty. Bone Joint J 2020;102-B:401–2. https://doi.org/10.1302/0301-620X.102B4.BJJ-2020-0183.
- [5] Nam D, Nunley RM, Barrack RL. Patient dissatisfaction following total knee replacement: a growing concern? Bone Joint J 2014;96-B:96–100. https://doi.org/10.1302/0301-620X.96B11.34152.
- [6] Nedopil AJ, Howell SM, Hull ML. Kinematically Aligned Total Knee Arthroplasty Using Calipered Measurements, Manual Instruments, and Verification Checks. Pers Hip Knee Jt Replace 2020:279–300. https://doi.org/10.1007/978-3-030-24243-5_24.
- [7] Ettinger M, Tuecking LR, Savov P, Windhagen H. Higher satisfaction and function scores in restricted kinematic alignment versus mechanical alignment with medial pivot design total knee arthroplasty: A prospective randomised controlled trial. Knee Surg Sports Traumatol Arthrosc 2024;32:1275–86. https://doi.org/10.1002/KSA.12143.
- [8] Cortina G, Za P, Papalia GF, et al. Restricted kinematic alignment is clinically non-inferior to mechanical alignment in the short and mid-term: A systematic review. Knee 2023;45:137–46. https://doi.org/10.1016/J.KNEE.2023.10.003.
- [9] Dossett HG, Arthur JR, Makovicka JL, et al. A Randomized Controlled Trial of Kinematically and Mechanically Aligned Total Knee Arthroplasties: Long-Term Follow-Up. J Arthroplasty 2023;38:S209–14. https://doi.org/10.1016/J.ARTH.2023.03.065.
- [10] Hiyama S, Takahashi T, Takeshita K. Kinematically Aligned Total Knee Arthroplasty Did Not Show Superior Patient-Reported Outcome Measures: An Updated Meta-analysis of Randomized Controlled Trials with at Least 2-Year Follow-up. J Knee Surg 2022;35:634–9. https://doi.org/10.1055/S-0040-1716494.
- [11] Miura T, Takahashi T, Watanabe J, et al. Postoperative clinical outcomes for kinematically, restricted kinematically, or mechanically aligned total knee arthroplasty: a systematic review and network meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 2023;24. https://doi.org/10.1186/S12891-023-06448-0.
- [12] Howell SM, Akhtar M, Nedopil AJ, Hull ML. Reoperation, Implant Survival, and Clinical Outcome After Kinematically Aligned Total Knee Arthroplasty: A Concise Clinical Follow-Up at 16 Years. J Arthroplasty 2023. https://doi.org/10.1016/J.ARTH.2023.08.080.
- [13] Tian G, Wang L, Liu L, Zhang Y, Zuo L, Li J. Kinematic alignment versus mechanical alignment in total knee arthroplasty: An up-to-date meta-analysis. J Orthop Surg (Hong Kong) 2022;30. https://doi.org/10.1177/10225536221125952.
- [14] Courtney PM, Lee GC. Early Outcomes of Kinematic Alignment in Primary Total Knee Arthroplasty: A Meta-Analysis of the Literature. J Arthroplasty 2017;32:2028-2032.e1.