

Clinical and Radiological Outcomes of Medial Meniscal Allograft Transplantation Combined with Re-alignment Surgery

¹Dhong Won Lee, M.D, Ph.D & ²Jin Goo Kim, M.D, Ph.D ¹Konkuk University Medical Center, Seoul, Korea, Republic of ²Myongji Hospital, Goynag-Si Gyeonggi-do, Korea, Republic of

Faculty Disclosure Information

There is no conflict of interest.

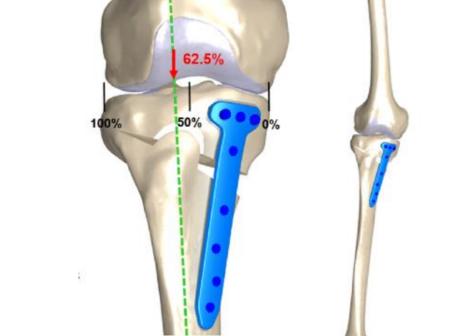
Introduction

Meniscal allograft transplantation (MAT)

→ Favorable clinical and radiological results

Possible causes for the inferior outcomes

- Meniscal mobility
- Frequent degenerative change
- Varus malalignment


Bin et al, AJSM, 2018 Koh et al, JBJS, 2012 Makiev KG, KSRR, 2022 3 Van Der Straeten et al. Plos One. 2016

Introduction

Varus malalignment → **Unfavorable** outcome after **MMAT**

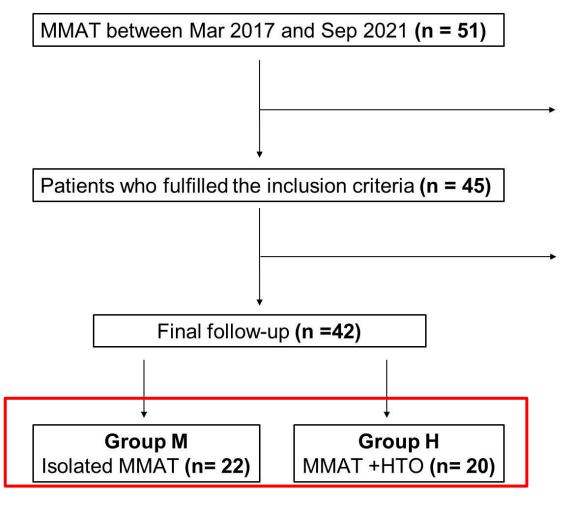
Obtain proper alignment via a high tibial osteotomy (HTO)

- → For a meniscal allograft to function optimally
- Shear and compressive forces on the medial side \
- Graft survival ↑
- Stability and longevity of the procedure ↑

Purpose

To compare the clinical and radiological results of medial MAT (MMAT) + HTO and isolated MMAT

Hypothesis


The outcomes of MMAT + HTO would not be inferior to those of MMAT alone.

Inclusion criteria

Methods

- Underwent magnetic resonance imaging (MRI) examination within 2 days postoperatively & a follow-up MRI 1 year after MMAT
- Minimum of 2-year follow-up

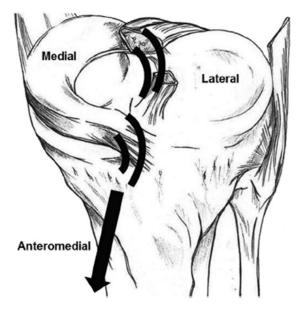
Excluded (n = 6)

- Age > 50 yrs
- Cruciate ligament deficiency
- Diffuse cartilage loss
- Joint obliteration on Rosenberg view

Excluded (n = 3)

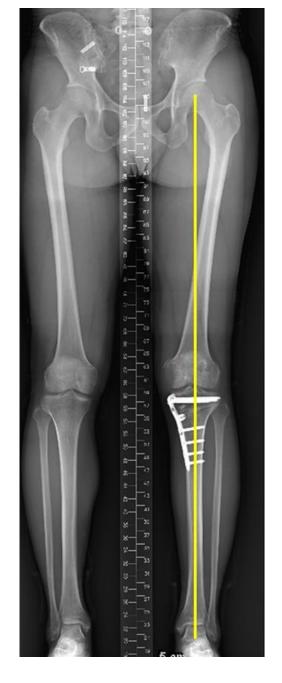
- Follow-up loss
- Didn't fully perform clinical tests

Methods (Surgical Techniques)


MMAT

Arthroscopic Medial Meniscal Allograft
Transplantation with Modified Bone Plug Technique

Dhong Won Lee, M.D., Jung Ho Park, M.D., Kyu Sung Chung, M.D., Jeong Ku Ha, M.D., and Jin Goo Kim, M.D., Ph.D.


Arthrosc Tech, vol 6, No 4, 2017

HTO

- Varus alignment (absolute mechanical axis > 3 degrees)
- Target alignment : Lateral tibial intercondylar eminence
- Weightbearing line pass through
 55% to 60% laterally

X- rays

Before surgery, 6 and 12 months after surgery, and every year

K-L grade: Rosenberg view

HKA angle

Joint line congruence angle

Magnetic Resonance Imaging (MRI)

2 times: Preoperatively and at 2 days and 12 months

• ICRS grades: High grade : ICRS ≥ 3

Graft extrusion

- ✓ Coronal plane at the posterior border level of MCL
- ✓ Pathologic extrusion : graft extrusion of 3 mm
- Signal intensity of the graft

Methods

Clinical evaluations

Before surgery, 6 and 12 months after surgery, and every year

Subjective knee function

Lysholm score

International Knee Documentation Committee (IKDC) knee score

Tegner activity scale(TAS)

Objective knee function

Isokinetic strength test: Biodex System III dynamometer at an angular

velocity of 60 deg/s.

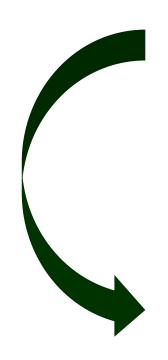
Results (Demographic Data)

	Group M (n=22)	Group H (n=20)	P
Age, y	34.4 ± 5.2	37.7 ± 6.3	.074
BMI	22.7 ± 2.4	23.2 ± 3.1	.565
Sex, n, male/female	22/9	20/10	.719
Clinical follow-up period, mo	29.2 ± 4.9	27.4 ± 5.3	.262
MRI follow-up duration, mo	12.8 ± 1.9	12.4 ± 1.7	.476

Results (Clinical Scores)

Preoperative	Group M (n=22)	Group H (n=20)	P
Lysholm score	55.4 ± 9.5	52.6 ± 8.9	.331
IKDC subjective score	51.4 ± 10.3	49.3 ± 11.4	.536

Postoperative	Group M (n=22)	Group H (n=20)	P
Lysholm score	81.3 ± 9.7	84.2 ± 10.2	.352
IKDC subjective score	79.6 ± 9.4	81.4 ± 8.3	.514
Isokinetic extensor strength, %	155.8 ± 25.4	163.2 ± 28.1	.375



Results (X-rays)

Preoperative	Group M (n=22)	Group H (n=20)	P
Joint space width	3.6 ± 1.1	2.9 ± 1	.037
Hip-knee-ankle angle, deg	Varus 1.8 ± 1	Varus 4.2 ± 1.9	<.001
Joint congruence angle, deg	1.6 ± 1.1	2.8 ± 1.3	.002
KL grade, n, 1/2/3/4	10/11/1/0	4/12/4/0	.115
Postoperative	Group M (n=22)	Group H (n=20)	P
Postoperative Hip-Knee-Ankle angle, deg	Group M (n=22) Varus 1.2 ± 2.2	Group H (n=20) Valgus 2.2 ± 0.7	<.001
Hip-Knee-Ankle angle,	- ,		_
Hip-Knee-Ankle angle, deg Joint congruence	Varus 1.2 ± 2.2	Valgus 2.2 ± 0.7	<.001

70175

Results (MRI)

Preoperative	Group M (n=22)	Group H (n=20)	P
ICRS grade on MFC ≥ 3	3 (13.6%)	6 (30%)	.269
ICRS grade on MTP ≥ 3	1 (4.5%)	3 (15%)	.333
Graft extrusion (Post 2days)	0.5 ± 0.4	0.6 ± 0.4	.269

Postoperative	Group M (n=22)	Group H (n=20)	P
ICRS grade on MFC ≥ 3	2 (9.1%)	3 (15%)	.269
ICRS grade on MTP ≥ 3	1 (4.5%)	1 (5%)	.333
Graft extrusion (Post. 12mo.)	3.3 ± 0.7	2.7 ± 0.8	.014
Pathologic extrusion	9 (40.9%)	4 (20%)	0.143

Conclusion

- Clinical scores significantly improved after isolated MMAT and MMAT combined with HTO
- Postoperative graft extrusion was greater in patients who underwent isolated MMAT

=> Active correction of varus alignment during MMAT may help in intra-articular biomechanics.

References

- Astur DC, Novaretti JV, Gomes ML, et al. Medial Opening Wedge High Tibial Osteotomy Decreases Medial Meniscal Extrusion and Improves Clinical Outcomes and Return to Activity. *Orthop J Sports Med.* 2020;8(4):2325967120913531.
- Debieux P, Jimenez AE, Novaretti JV, et al. Medial meniscal extrusion greater than 4 mm reduces medial tibiofemoral compartment contact area: a biomechanical analysis of tibiofemoral contact area and pressures with varying amounts of meniscal extrusion. *Knee Surg Sports Traumatol Arthrosc.* 2021;29(9):3124-3132.
- Feucht MJ, Minzlaff P, Saier T, et al. Degree of axis correction in valgus high tibial osteotomy: proposal of an individualised approach. *Int Orthop.* 2014;38(11):2273-2280.
- Jung SH, Jung M, Chung K, et al. Preoperative joint line obliquity, a newly identified factor for overcorrection, can be incorporated into a novel preoperative planning method to optimise alignment in high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2024;32(1):64-77.
- Kang BY, Lee DK, Kim HS, Wang JH. How to achieve an optimal alignment in medial opening wedge high tibial osteotomy? Knee Surg Relat Res. 2022;34(1):3.
- Kazi HA, Abdel-Rahman W, Brady PA, Cameron JC. Meniscal allograft with or without osteotomy: a 15-year follow-up study. Knee Surg Sports Traumatol Arthrosc. 2015;23(1):303-309.
- Kim DH, Lee GC, Kim HH, Cha DH. Correlation between meniscal extrusion and symptom duration, alignment, and arthritic changes in medial meniscus posterior root tear: research article. *Knee Surg Relat Res.* 2020;32(1):2.

