

Is it worth changing from computer navigation to robotic knee replacement?

A prospective study comparing patient outcomes following robotic-assisted and computer navigated TKA

Jacob O'Brien B. Physio (Hons)
Dr Myles Coolican FRACS
Dr David Parker FRACS
Dr Harbeer Ahedi PhD
Dr Pradyumna Raval

Faculty Disclosure Information

Declaration of Interest	Dr Myles Coolican	Dr David Parker
Held shares in:	-	Personalised Surgery, Ganymed Robotics
Received royalties from:	S&N	S&N
Done consulting work for:	S&N	S&N
Given paid presentations for:	S&N, J&J DePuy, Medacta	S&N, Arthrex
Received institutional support from:	S&N, Corin, ZB	S&N, Corin, ZB, Arthrex
Editorial board of:	-	AJSM, JISAKOS, AP-SMART Journal, OJSM

^{*}S&N – Smith & Nephew, J&J – Johnson & Johnson, ZB – Zimmer Biomet

^{**}Nothing to declare for other included authors

Background

- The use of computer-assisted surgery in TKA has expanded greatly
- Computer-navigated TKA (CN-TKA) studies have shown significant benefit over conventional TKA short-term and long-term outcomes.
- Early robotic-assisted TKA (RA-TKA) studies have shown some modest benefit compared to conventional TKA
- Very limited data exists comparing CN-TKA to RA-TKA, and comparing different RA-TKA modalities

Aims

- Compare short term (12-month) PROMs following CN-TKA versus RA-TKA
- Compare short term PROMs following ROSA TKA (Zimmer Biomet) versus CORI TKA (Smith & Nephew)

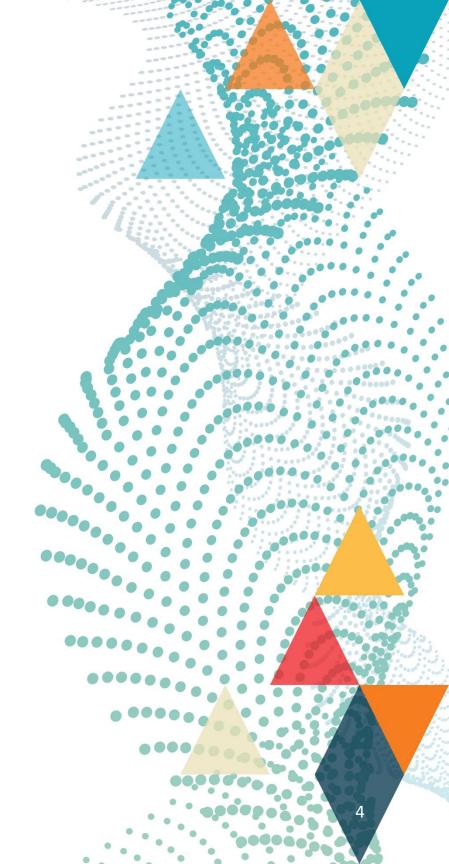
Methods:

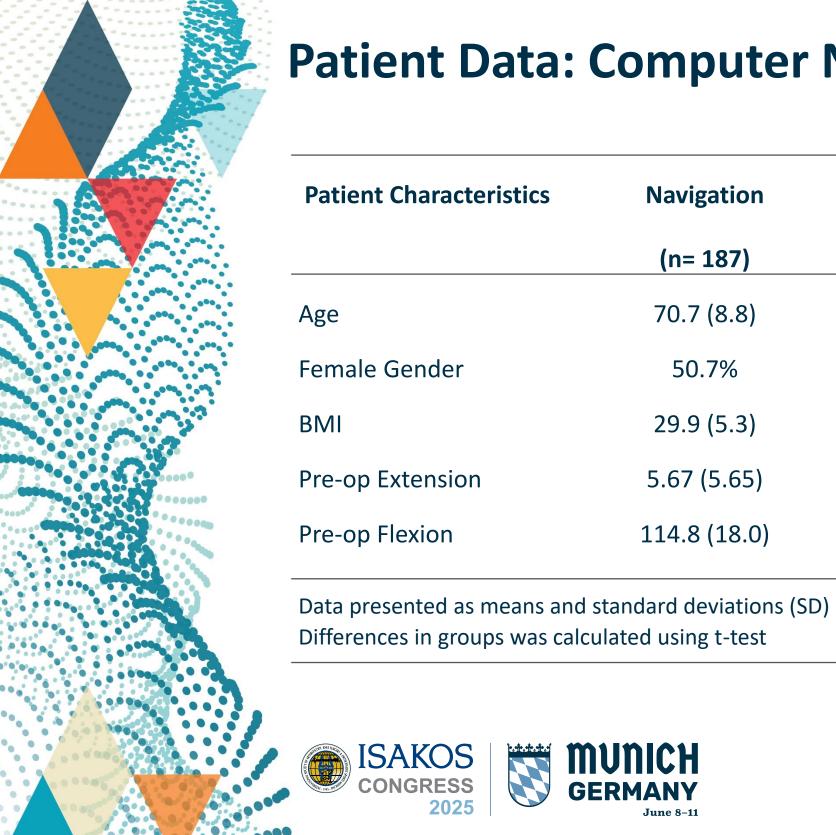
- Two Hospitals in Sydney, Australia
- Two high volume TKA surgeons, experienced with CN-TKA
- Retrospective analysis of prospectively collected data of 399 patients
- No Randomization
- Time period: December 2021 April 2023

Data Collection:

Demographics: Age, Gender, BMI

Knee ROM: Pre-op, Intra-op, Post-op

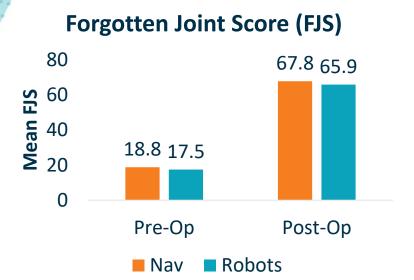

PROMS: Oxford Knee Score, Forgotten Joint Score, Patient Satisfaction,

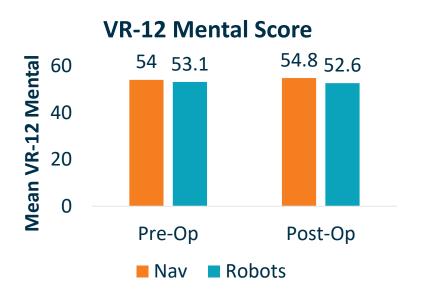

Pain and VR-12

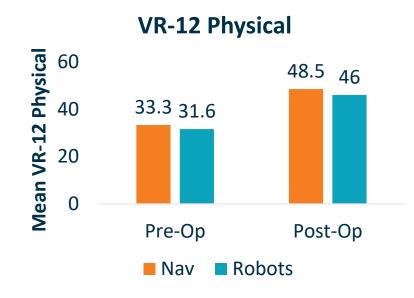
Data time points: Pre-op, 3 months, 12 months

Study Retention: 80.6% (19.4% attrition)

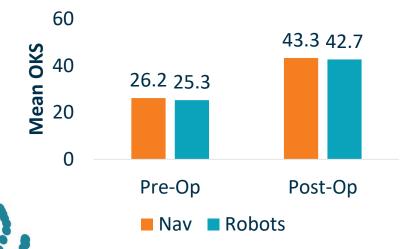
Patient Data: Computer Navigation vs Robots


Patient Characteristics	Navigation	Robots	P values
	(n= 187)	(n=212)	
Age	70.7 (8.8)	71.1 (8.0)	0.60
Female Gender	50.7%	49.4%	0.48
BMI	29.9 (5.3)	30.3 (5.8)	0.45
Pre-op Extension	5.67 (5.65)	6.53 (9.37)	0.30
Pre-op Flexion	114.8 (18.0)	113.3 (15.3)	0.42





Patient Reported Outcomes: Nav vs Robots



Δ VR-12 P

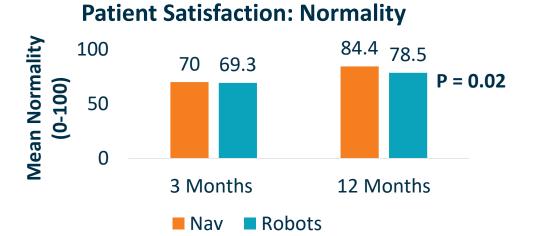
0.91

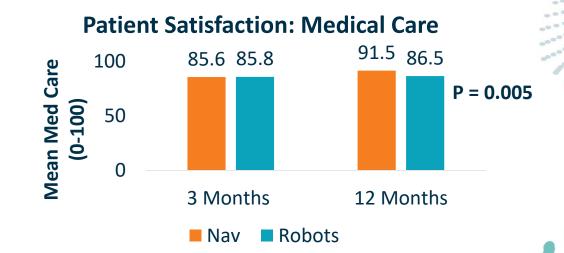
Oxford Knee Score (OKS)

SAKOS

CONGRESS

	Nav	Robots	P Valu
Δ FJS	49.9 (29.4)	48.8 (28.1)	0.74
Δ ΟΚS	17.2 (8.5)	17.1 (8.9)	0.95
Λ VR-12 M	0.5 (10.6)	-0.6 (11.3)	0.39


13.6 (10.1)


Delta Scores

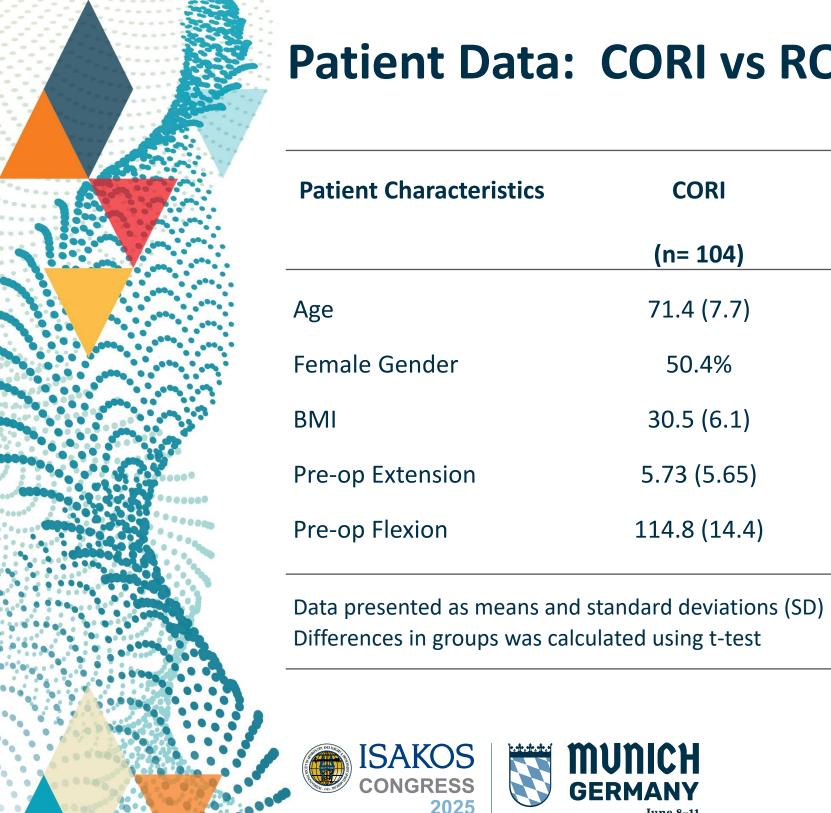
No clinically meaningful difference observed

13.7 (10.5)

Patient Satisfaction: Nav vs Robots

Pain: VAS (0-100)

	3 months	12months
NAV	25.2	12.6
ROBOTS	25.5	17.7
P-values	0.89	0.03


Delta Scores

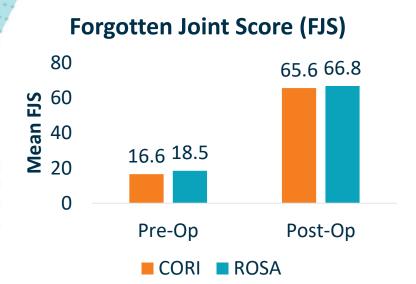
	Nav	Robots	P Value
ΔNorm	9.6 (24.8)	8.8 (24.6)	0.80
Δ Care	3.3 (16.9)	0.5 (17.4)	0.23
Δ Pain	-9.0 (23.7)	-6.3 (26.1)	0.43

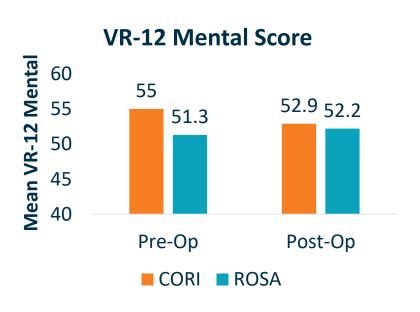
Small significant difference observed at 12 months post-op

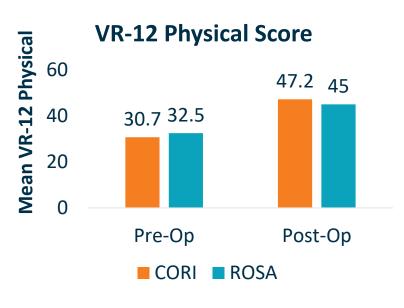
No significant difference observed between the delta scores

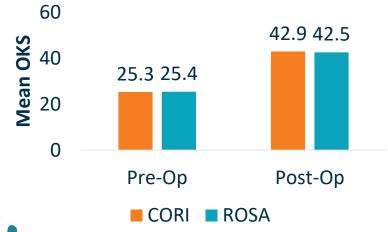
Patient Data: CORI vs ROSA

Patient Characteristics	CORI	ROSA	P values	
	(n= 104)	(n=108)		
Age	71.4 (7.7)	70.9 (8.3)	0.71	
Female Gender	50.4%	48.4%	0.38	
ВМІ	30.5 (6.1)	30.1 (5.5)	0.53	
Pre-op Extension	5.73 (5.65)	7.39 (12.1)	0.23	
Pre-op Flexion	114.8 (14.4)	111.8 (16.2)	0.18	








Patient Reported Outcomes: CORI vs ROSA

Oxford Knee Score (OKS)

SAKOS

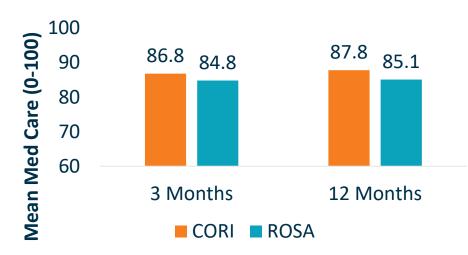
CONGRESS

Delta Scores

	CORI	ROSA	P Value
ΔFJS	49.2 (29.6)	48.4 (26.6)	0.85
Δ ΟΚS	17.4 (8.8)	16.8 (9.1)	0.69
Δ VR-12 M	-1.4 (11.4)	0.2 (11.2)	0.34
Δ VR-12 P	15.1 (11.0)	12.4 (9.93)	0.18

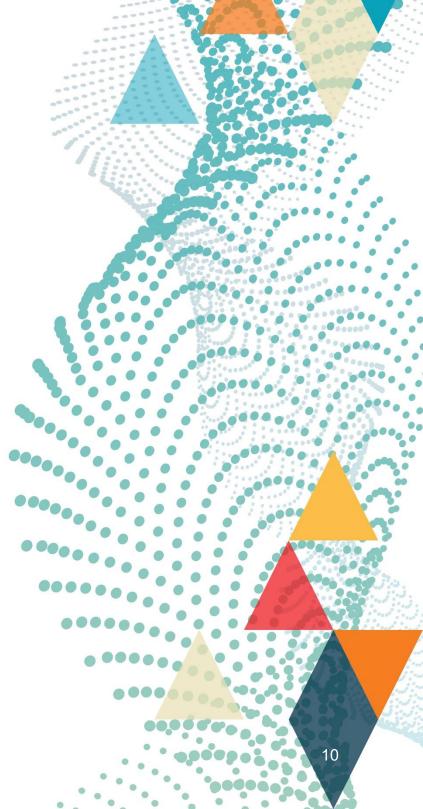
No significant difference observed

Patient Satisfaction: CORI vs ROSA


Patient Satisfaction: Normality

	3 months	12months
NAV	26.1	15.6
ROBOTS	24.9	19.8
P-values	0.75	0.22

Patient Satisfaction: Medical Care



Delta Scores

	CORI	ROSA	P Value
Δ Norm	11.5 (22.5)	5.9 (26.6)	0.20
Δ Care	-0.2 (19.2)	1.3 (15.2)	0.62
Δ Pain	-7.8 (24.4)	-4.7 (28.0)	0.49

No significant difference observed

Results Summary

• CN-TKA had slightly less pain and felt more normal than RA-TKA at 12-months; 12.6 vs 17.7 (p=0.03) and 84.4 vs 78.5, (p=0.02) respectively.

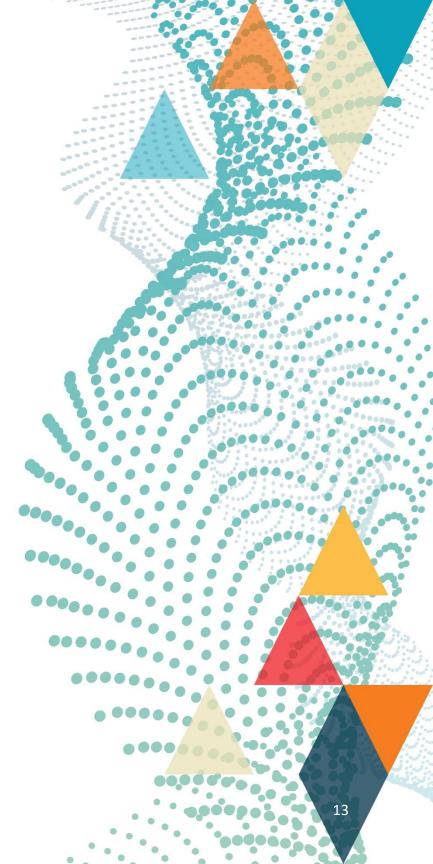
• No difference in PROMs (Oxford Knee Score and Forgotten Joint Score) were seen at 12-months between CN-TKA and RA-TKA.

• No significant difference was observed between the two RA-TKA techniques (CORI and ROSA) in any outcome.

No significant difference was demonstrated between the delta scores of any comparison in the study.

Conclusion

- The uptake of robotic technology is rapidly increasing however there is no published evidence supporting its superiority over computer navigation, as shown by this study.
- For well-established navigation surgeons there is no clear benefit to change to robotic techniques based on patient outcomes.
- Longer term follow-up will help further clarify this conclusion.



References

- Buchlak, Q. D., Clair, J., Esmaili, N., Barmare, A., & Chandrasekaran, S. (2022). Clinical outcomes associated with robotic and computer-navigated total knee arthroplasty: a machine learning-augmented systematic review. *European journal of orthopaedic surgery & traumatology*, 32(5), 915-931
- Figueroa, F., Parker, D., Fritsch, B., & Oussedik, S. (2018). New and evolving technologies for knee arthroplasty—computer navigation and robotics: state of the art. *Journal of ISAKOS*, *3*(1), 46-54.
- Shatrov, J., & Parker, D. (2020). Computer and robotic—assisted total knee arthroplasty: a review of outcomes. *Journal of experimental orthopaedics*, 7, 1-15
- Vermue, H., Batailler, C., Monk, P., Haddad, F., Luyckx, T., & Lustig, S. (2023). The evolution of robotic systems for total knee arthroplasty, each system must be assessed for its own value: a systematic review of clinical evidence and meta-analysis. *Archives of Orthopaedic & Trauma Surgery*, 143(6), 3369-3381
- Walgrave, S., & Oussedik, S. (2023). Comparative assessment of current robotic-assisted systems in primary total knee arthroplasty. *Bone Jt Open, 4*(1), 13-18.

