

Thicker and Shorter Hamstring Tendon Autograft
Can Improve Graft Survival in Double Bundle ACLR

Joo-Hwan Kim, MD, MS.
Joon Ho Wang, MD, Ph.D.

Sungkyunkwan University
Samsung Medical Center

Seoul, Korea

Faculty Disclosure Information

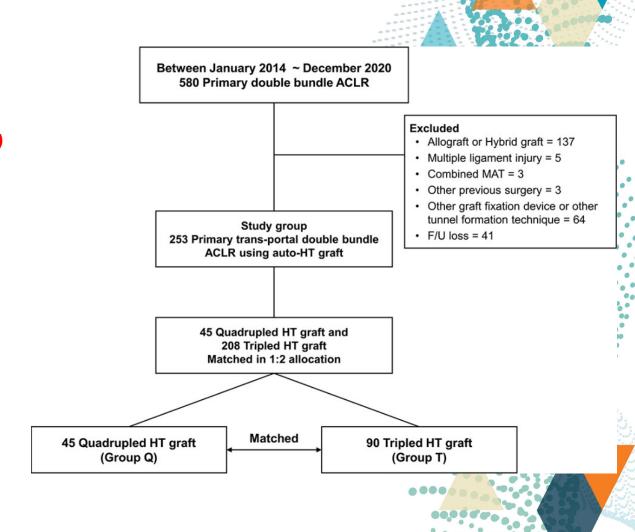
Nothing to disclosure

Background

- DB ACLR could enhance rotational stability and improve functional outcomes.
- Higher-than-expected failure rate of DB ACLR.
 - 31 of 129 (24%) patients failed (Onishi et. al. OJSM 2023)
 - 9 of 55 (16.4%) patients failed (Yabroudi et. al. OJSM 2016)
- Insufficient thickness of the hamstring graft during ACLR can lead to an increased risk of failure
- To increase graft diameter, use **both the semitendinosus and gracilis** tendons together or **fold the hamstring tendon (HT) multiple times.**
- DB ACLR, the HTs must be used separately for each bundle.

Purpose

 To compared the graft failure rate and clinical outcomes between two different HT graft preparation methods used in DB ACLR


Methods

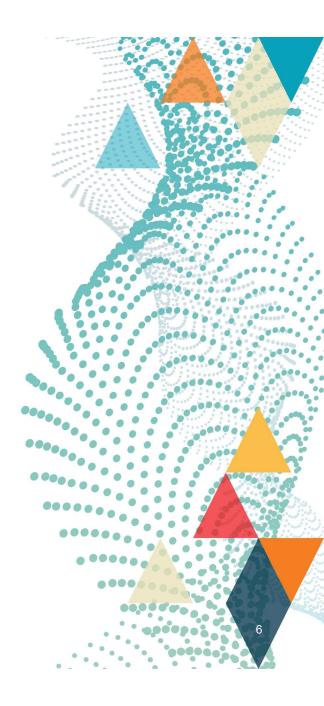
1:2 Propensity score match

Group Q (Quadrupled) vs Group T (Tripled)

ASMD < 0.25 for appropriate matching

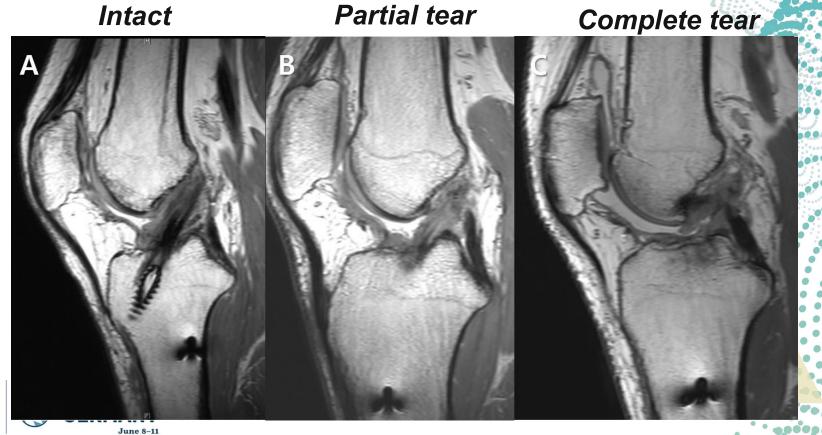
Age, Sex, BMI, Pre-injury Tegner activity scale, Injury to ACLR interval (3 months)

Methods


Group Q

- Quadrupled (4-strand) hamstring graft
- ≥ 10mm graft inserted into femur tunnel

Group T


- Tripled (3-strand) hamstring graft
- ≥ 15mm graft inserted into femur tunnel

Methods

MRI evaluation of graft continuity

	Group Q	Group T	P Value	ASMD
Number of patients	45	90		
Age (yr)	31.6 ± 11.4	31.5 ± 12.2	.964	.009
Sex			.781	.074
Male	41 (91.1)	80 (88.9)		
Female	4 (8.9)	10 (11.1)		
BMI	25.4 ± 3.0	25.1 ± 3.0	.628	.090
Injured side (%)			.387	
Right	24 (53.3)	55 (61.1)		
Left	21 (46.7)	35 (38.9)		
Interval between				
injury and surgery,	5.8 ± 10.0	5.6 ± 10.8	.899	
(months)				
> 3 months (%)	21 (46.7)	40 (44.4)	.807	.045
Follow-up period,	37.3 ± 12.0	39.6 ± 17.6	.261	
(months)	31.3 ± 12.0	39.0 ± 17.0	.201	
Pre-injury Tegner	7.2 ± 1.6	7.3 ± 1.4	.404	.051

Demographic factors did not show a significant difference between the two groups.

	Group Q	Group T	P Value
Graft diameter, mm			
AM	8.2 ± 0.6	7.2 ± 0.6	<.001
PL	6.2 ± 0.5	5.6 ±0.5	<.001
Graft length, mm			
AM	69.3 ± 12.3	84.8 ± 17.1	<.001
PL	69.5 ± 18.7	77.3 ± 16.5	.038
Femur tunnel length, mm			
AM	34.9 ± 4.8	35.9 ± 4.3	.202
PL	36.2 ± 4.1	37.6 ± 4.1	.092

	Group Q	Group T	P Value
Suspensory loop			
length, mm			
AM	22.4 ± 4.6	16.2 ±2.7	<.001
PL	24.5 ± 3.8	17.6 ± 3.2	<.001
Length of graft engag ed in femur tunnel,			
mm			
AM	13.4 ± 5.9	18.5 ± 4.0	<.001
PL	13.9 ± 6.9	18.1 ± 3.3	<.001

In Group Q, both the AM and PL diameters were significantly thicker, while the lengths were shorter.

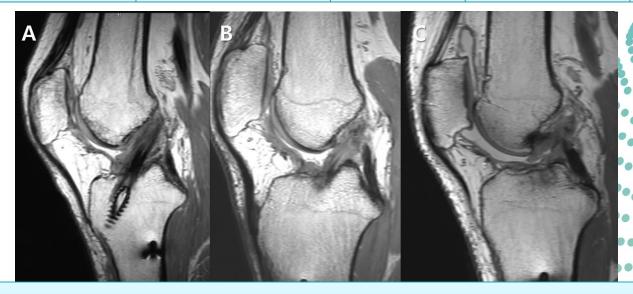
In Group Q, the graft length engaged in the femoral tunnel was shorter.

Group Q (N = 45)

- Total 1 graft failure (2.2%)
- •1 failure d/t re-injury

Group
$$T(N = 90)$$

- Total 14 graft failure (15.6%)
- •10 failure d/t re-injury
- •4 failure w/o definite injury


	Group Q	Group T	P Value
Lysholm	92.1 ± 9.3	94.4 ± 6.2	.165
Tegner activity scale	6.6 ± 1.9	6.4 ± 1.4	.616
≥ 6, %	34 (75.6)	61 (67.8)	.351
IKDC subjective score	84.0 ± 14.0	85.7 ± 11.2	.480
KOOS			
Pain	94.5 ± 8.1	95.3 ± 5.7	.620
Symptoms	94.0 ± 6.7	92.4 ± 9.0	.400
Activity in daily living	97.4 ± 5.1	97.3 ± 5.8	.890
Sports and recreation	84.2 ± 16.1	83.5 ± 19.0	.858
Quality of life	80.8 ± 17.9	85.0 ± 18.2	.310

No significant difference in postoperative PROs between the two groups.

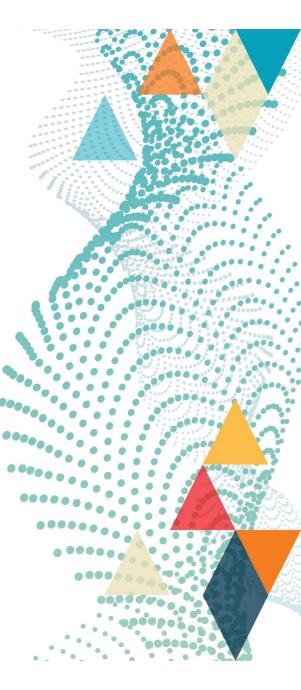
	Number, %	Postoperative months	Intact	Partial	Substantial loss
Group Q	41 (91.1)	8.5 ± 6.7	38	3	0
Group T	71 (78.9)	10.2 ± 10.2	53	17	1

Difference in graft continuity on MRI between the two groups did not reach statistical significance. (P=0.067)

Conclusion

 In DB ACLR using HT autografts, graft survival was superior with quadrupled HT grafts than with tripled grafts.

Increasing the graft diameter, particularly in the AM bundle,
is expected to positively affect graft survival, even if it results in
a reduction in graft length and femoral tunnel engagement
length



Reference

- Ahlden M, Sernert N, Karlsson J, Kartus J. A prospective randomized study comparing double- and single-bundle techniques for anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(11):2484-2491.
- Amano H, Toritsuka Y, Uchida R, Mae T, Ohzono K, Shino K. Outcome of anatomical double-bundle ACL reconstruction using hamstring tendons via an outside-in approach. *Knee Surg Sports Traumatol Arthrosc.* 2015;23(4):1222-1230.
- Balasingam S, Karikis I, Rostgard-Christensen L, et al. Anatomic Double-Bundle Anterior Cruciate Ligament Reconstruction Is Not Superior to Anatomic Single-Bundle Reconstruction at 10-Year Follow-up: A Randomized Clinical Trial. *Am J Sports Med.* 2022;50(13):3477-3486.
- Calvo R, Figueroa D, Figueroa F, et al. Five-Strand Hamstring Autograft Versus Quadruple Hamstring Autograft With Graft Diameters 8.0 Millimeters or More in Anterior Cruciate Ligament Reconstruction: Clinical Outcomes With a Minimum 2-Year Follow-Up. *Arthroscopy*. 2017;33(5):1007-1013.
- Gupta PK, Acharya A, Khanna V, Mourya A. Intra-femoral tunnel graft lengths less than 20 mm do not predispose to early graft failure, inferior outcomes or poor function. A prospective clinico-radiological comparative study. *Musculoskelet Surg.* 2023;107(2):179-186. Figueroa D, Figueroa F, Calvo R, Vaisman A, Espinoza G, Gili F. Anterior cruciate ligament reconstruction in patients over 50 years of age. *Knee.* 2014;21(6):1166-1168.

