

Long-Term Functional, Sports- and Work-Related Outcomes After Arthroscopic Capsulolabral Revision Repair for Recurrent Anterior Shoulder Instability:

A Minimum 20-Year Follow-Up

Lukas N. Muench,¹ Isabella Kuhn,¹ Katrin Mitterpleininger,¹ Christoph Bartl,² Andreas B. Imhoff,¹
Bastian Scheiderer,¹ Sebastian Siebenlist,¹ Marco-Christopher Rupp¹

¹Department of Sports Orthopaedics, Technical University of Munich, Germany ²Center of Orthopaedics and Osteoporosis, Munich, Germany

www.sportortho.university

Presenter Disclosure Information

Lukas N. Münch

disclosed no conflict of interest.

Background

- > Recurrent shoulder instability after primary repair 4% to 60%
- > Revision surgery in up to 15%
- Risk factors: bony glenoid defects, engaging Hill-Sachs lesions, capsular redundancy, and traumatic events.
- Indication of bone-block transfers

In the absence of severe glenoid bone defects and engaging Hill-Sachs lesions, arthroscopic capsulolabral revision repair (ACRR) as a suitable approach.

Advantages:

- anatomic labral repair
- reduced morbidity
- intra-articular pathologies

Arner et al., Arthroscopy, 2022 Bartl et al., AJSM, 2011 Lau et al., OJSM, 2020 Rossi et al., AJSM, 2021 Waterman et al., JAAOS, 2020

Purpose & Hypothesis

Purpose:

To provide prospectively collected **long-term clinical outcomes**, sports activity, and work ability of patients undergoing **ACRR** for recurrent anterior shoulder instability at a **minimum of 20 years**.

Hypothesis:

Patients undergoing ACRR would **maintain significant functional improvement** along with a sufficient sports activity and work ability at a minimum follow-up of 20 years.

Methods

Inclusion criteria:

- ACRR for recurrent anterior shoulder instability between 09/1998 and 08/2003
- Anatomic soft-tissue index procedure
- Glenoid bone loss < 20%</p>
- Non-engaging Hill-Sachs lesion

Exclusion criteria:

- Non-anatomic index procedure
- Glenoid bone loss > 20%
- Engaging Hill-Sachs lesion
- Concomitant full-thickness rotator cuff tear
- Multidirectional or voluntary instability

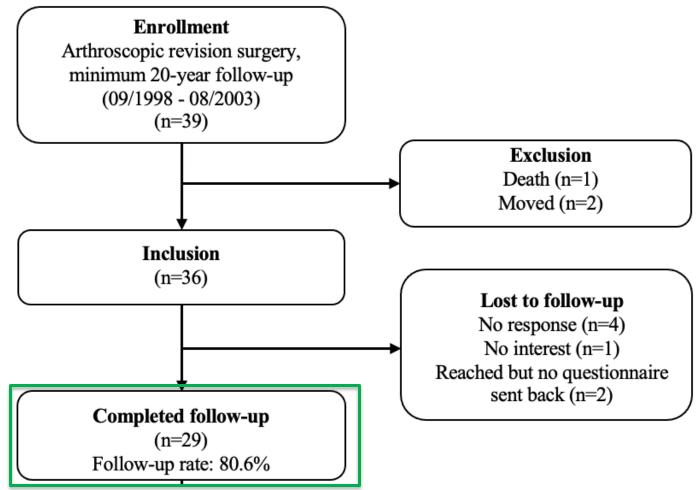
Methods

Functional Outcome Measures:

- > Rowe & Constant-Murley (CM) preop, min. 2 years and min. 20 years postop
- > SANE, Simple Shoulder Test (SST), and VAS for pain at final min. 20-year follow-up

2

Sports Specific Outcomes:


- > Sports activity assessment tool
- > Activity level, discipline, subjective strength/mobility/endurance

3

Work Specific Outcomes:

> Work ability assessment questionnaire (occupation, level of physical strain)

1

Functional Outcome Measures

PROs	Preoperatively	Min. 2y FU	p-value	Min. 20y FU	p-value
Constant-Murley Score	73.7±9.9 (42.0-85.0)	87.9±8.0 (70.0-98.0)	<0.001	83.4±11.0 (57.0-100.0)	<0.001
Constant-Murley Score (age-adapted)	77.1±10.4 (42.9-90.3)	94.3±9.4 (74.2-105.6)	<0.001	90.0±12.0 (59.0-114.0)	<0.001
Rowe Score	22.6±13.2 (0.0-40.0)	86.7±18.7 (35.0-100.0)	<0.001	86.9±15.8 (50.0-100.0)	<0.001

- ✓ No significant difference in PROs between 2-year and 20-year FU
- ✓ MCID for Rowe: 79.3% at 2-year and 20-year FU
- ✓ PASS for Rowe: 51.7% at 2-year and 48.3% at 20-year FU
- ✓ Rate of recurrent instability 27.6% (n = 8)

2

Sports Specific Outcomes

- ✓ Return to sports 100%, with return to preinjury level 81% at 2-year and 42.9% at 20-year FU
- ✓ Decline in sport-specific capabilities compared to preinjury
- ✓ Amount of activity and subjective mobility significantly decreased from 2-year to 20-year FU

Sport specific measure	Preinjury	p-value	Min 2y FU	p-value	Min 20y FU	p-value
Amount of Activity (%)	100.0±0.0	0.002	84.0±21.2	<0.001	62.0±34.0	0.022
Strength (%)	100.0±0.0	0.011	87.9±19.8	0.002	84.3±19.6	0.594
Endurance (%)	100.0±0.0	0.029	90.0±19.5	0.003	81.6±23.6	0.250
Mobility (%)	100.0±0.0	<0.001	87.9±10.2	<0.001	74.8±23.6	0.021

Work Specific Outcomes

- ✓ No change in type of employment and physical strain at work
- ✓ Working ability "excellent" (71%) and "good" (24%)

		Preoperatively	Min. 20y FU	p-value
Type of employment	School/university/training	3 (14%)	2 (10%)	0.892
	Employed	17 (81%)	18 (86%)	
	Self-employed	1 (5%)	1 (5%)	
Physical strain load at work	None Light Medium Heavy Very heavy	9 (50%) 2 (11%) 3 (17%) 2 (11%) 2 (11%)	9 (50%) 2 (11%) 5 (28%) 1 (6%) 1 (6%)	0.884

Limitations & Conclusion

Limitations:

- Limited sample size
- No radiographic imaging

Conclusion:

- > Significant improvement in functional outcomes at a minimum FU of 20 years
- > Favorable sport activity and work ability
- > Rate of recurrent instability 27.6%

Thank you for your attention!

Contact:

PD Dr. med. Lukas N. Muench

Sektion Sportorthopädie, TU München

lukas.muench@tum.de

www.sportortho.university

References

- 1. Arner JW, Ruzbarsky JJ, Bradley JP, Provencher MT. Management of Complex and Revision Anterior Shoulder Instability. *Arthroscopy*. 2022;38(5):1396-1397
- 2. Bartl C, Schumann K, Paul J, Vogt S, Imhoff AB. Arthroscopic capsulolabral revision repair for recurrent anterior shoulder instability. *Am J Sports Med*. 2011;39(3):511-518
- 3. Lau BC, Johnston TR, Gregory BP, et al. Outcomes After Revision Anterior Shoulder Stabilization: A Systematic Review. Orthop J Sports Med. 2020;8(5):2325967120922571
- 4. Rossi LA, Tanoira I, Gorodischer T, Pasqualini I, Ranalletta M. Recurrence and Revision Rates With Arthroscopic Bankart Repair Compared With the Latarjet Procedure in Competitive Rugby Players With Glenohumeral Instability and a Glenoid Bone Loss <20. Am J Sports Med. 2021;49(4):866-872
- 5. Waterman BR, Leroux T, Frank RM, Romeo AA. The Evaluation and Management of the Failed Primary Arthroscopic Bankart Repair. J Am Acad Orthop Surg. 2020;28(15):607-616