Corticosteroid Injections and Mid-Term Outcomes in Type 2 Diabetes Mellitus Patients with Adhesive Capsulitis

Stephen C. Weber, MD¹; Eve R. Glenn, ScB¹; Alexander R. Zhu, BA¹; James H. Padley, BS¹; Henry M. Fox, MD¹; Necati Bahadir Eravsar, MD¹; Edward G. McFarland, MD¹

¹Division of Shoulder and Elbow Surgery, Department of Orthopaedic Surgery,
Johns Hopkins University School of Medicine, Baltimore, MD, USA

Disclosures

• Dr. Weber:

- Paid Consultant for ProPharma, NDA Partners
- Editorial or Governing board of Archives of Orthopaedic And Trauma Surgery, Arthroscopy, Journal of Shoulder and Elbow Surgery, SLACK Incorporated
- Board of Directors member for AAOS, Arthroscopy Association of North America, International Society of Arthroscopy, Knee Surgery, and Orthopaedic Sports Medicine
- All relevant financial disclosures have been mitigated.

Dr. McFarland

Disclosures are available at the AAOS website.

Introduction

 Adhesive capsulitis (AC), or frozen shoulder, is a painful condition limiting shoulder range of motion (ROM), affecting 2-5% of individuals.^{1,2,3}

 AC is classified as primary (idiopathic) or secondary, with secondary cases linked to conditions like rotator cuff pathology and diabetes mellitus (T2DM).⁴

Introduction

• T2DM is a known risk factor for AC, associated with worse outcomes due to hyperglycemia-induced inflammation and fibrosis. 5,6

- Corticosteroid injections are a common nonoperative treatment but may have adverse effects in T2DM patients, including transient hyperglycemia and impaired healing.^{7,8}
- The mid-term effects (6-12 months) of corticosteroid injections in T2DM patients with AC remain unclear.

Objective

• Evaluate the 6-12 month outcomes of corticosteroid injections in T2DM patients with AC, focusing on pain recurrence, reinjection rates, and surgical intervention rates.

Materials and Methods

• **Study Design:** Retrospective cohort study using the TriNetX Research Network, a global database of over 130 million electronic health records.

• Inclusion Criteria: Patients with T2DM (ICD-10: E11) and a first-time diagnosis of AC (M75.00, M75.01, M75.02).

Materials and Methods

- Cohorts:
 - Injection Cohort: Patients receiving intra-articular corticosteroid injections within six months of diagnosis (ICD-10: 20610, 20611; HCPCS: J1885, J3301, J1030).
 - Non-Injection Cohort: Patients diagnosed with AC but did not receive corticosteroid injections.

Materials and Methods

Statistical Analysis:

- Propensity score matching (1:1) to control for demographics and comorbidities.
- Outcomes analyzed from 6 months to 1 year post-diagnosis.
- Statistical tests: Student's t-test (continuous variables), chi-square test (categorical variables).

Results

• **Cohort Size:** 59,054 total patients (Injection: 3,820; No Injection: 55,234); after matching, 3,819 per cohort.

• **Demographics (After Matching):** No significant differences in age, gender, race, or comorbidities between cohorts.

Table 1: Follow-up metrics and outcomes of T2DM patients with and without injection within six months of first-time adhesive capsulitis diagnosis

After Matching							
	Injection (n=3,819)		No Injection (n=3,819)				
Variable	Number	Percent/SD	Number	Percent/SD	P-Value	Risk Ratio	95% CI
Follow-Up Time (days)	323.6	94.8	314.6	106.1	<0.0001	NA	NA
Pain in joint*	40	11.1%	43	4.7%	<0.0001	2.4	1.6-3.6
Arthrocentesis, aspiration, and/or injection	454	11.9%	191	5.0%	<0.0001	2.4	2.0-2.8
Shoulder arthroscopy	73	1.9%	34	0.9%	0.0001	2.2	1.4-3.2
Infection following a procedure	≤10	0.3%	≤10	0.3%	1.0000	1.0	0.4-2.4
Stiffness of shoulder	72	1.9%	57	1.5%	0.1829	1.3	0.9-1.8
Strain of shoulder rotator cuff	39	1.0%	29	0.8%	0.2232	1.3	0.8-2.2
Shoulder contusion	≤10	0.3%	≤10	0.3%	1.0000	1.0	0.4-2.4
Unspecified mononeuropathy of upper limb	≤10	0.3%	≤10	0.3%	1.0000	1.0	0.4-2.4
Manipulation of shoulder joint under anesthesia	≤10	0.3%	≤10	0.3%	1.0000	1.0	0.42-2.4

^{*}After matching, the cohort sizes differed, with 361 patients in the Injection Cohort and 919 patients in the No Injection Cohort

Discussion/Conclusion

 T2DM patients who received corticosteroid injections had higher rates of pain recurrence, reinjections, and surgical interventions compared to those who did not.

• Findings align with prior research showing that T2DM patients have poorer outcomes following corticosteroid injections in other musculoskeletal conditions.

Discussion/Conclusion

- Other potential explanations:
 - Corticosteroid-induced hyperglycemia may impair tissue healing.
 - Injection may provide temporary relief but not address underlying fibrosis.
 - Patients in the injection cohort may have had more severe A1C at baseline.

References

- 1. Carette S. Adhesive capsulitis--research advances frozen in time? J. Rheumatol. 2000 Jun;27(6):1329–1331.
- 2. D'Orsi GM, Via AG, Frizziero A, Oliva F. Treatment of adhesive capsulitis: a review. Muscles Ligaments Tendons J. 2012 Apr;2(2):70–78.
- 3. Tighe CB, Oakley WS. The prevalence of a diabetic condition and adhesive capsulitis of the shoulder. South. Med. J. 2008 Jun;101(6):591–595. doi:10.1097/SMJ.0b013e3181705d39
- 4. Fairclough A, Waters C, Davies T, Dacombe P, Woods D. Long-Term Outcomes Following Manipulation Under Anaesthetic for Patients with Primary and Secondary Frozen Shoulder. Shoulder Elb. 2023 Apr;15(2):173–180. doi:10.1177/17585732211070007
- 5. D'Orsi GM, Via AG, Frizziero A, Oliva F. Treatment of adhesive capsulitis: a review. Muscles Ligaments Tendons J. 2012 Apr;2(2):70–78.
- 6. Lo S-F, Chu S-W, Muo C-H, Meng N-H, Chou L-W, Huang W-C, et al. Diabetes mellitus and accompanying hyperlipidemia are independent risk factors for adhesive capsulitis: a nationwide population-based cohort study (version 2). Rheumatol. Int. 2014 Jan;34(1):67–74. doi:10.1007/s00296-013-2847-4
- 7. Hwang JL, Weiss RE. Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes Metab. Res. Rev. 2014 Feb;30(2):96–102. doi:10.1002/dmrr.2486
- 8. Raynauld J-P, Buckland-Wright C, Ward R, Choquette D, Haraoui B, Martel-Pelletier J, et al. Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2003 Feb;48(2):370–377. doi:10.1002/art.10777