Influence of Different Standing Position on Anatomical Parameters of Coronal Whole-leg Weightbearing Radiographs in Preoperative Planning for High Tibial Osteotomy

Tomoaki KAMIYA, Kodai HAMAOKA, Yohei OKADA, Yasutoshi IKEDA, Kazushi HORITA, Atsushi TERAMOTO

Department of Orthopaedic Surgery, Sapporo Medical University

ISAKOS CONGRESS 2025

COI disclosure Name of First Author: Tomoaki Kamiya

The authors have no financial conflicts of interest to disclose concerning the presentation

INTRODUCTION

- Coronal whole-leg radiographs are used in the preoperative planning for HTO [1].
- In general, the anteroposterior long-leg view is obtained with the patella centred on the femoral condyles.
- Although weight-bearing coronal whole-leg radiographs are essential, the effect of standing position has not been clarified.

PURPOSE

• To assess the differences in lower-limb anatomical parameters according to different weight-bearing standing positions with the legs spread or closed.

MATERIALS

- Digital radiographs were obtained from 176 patients with Kellgren-Lawrence (KL) grade I, II or III varus knee OA [2].
- Mean age was 64.6 years old (16-92 years old), a tola of 60 males and 116 females were included.
- Patients with flexion contractures or those unable to stand with full weight bearing were excluded.

Number of cases: grade 0 33 grade I 63 grade II 51 grade III 58

METHODS

1

- Full weight-bearing coronal wholeleg radiographs with the patella centred on the femoral condyle were taken.
- Each patient was assessed in two standing positions: legs spread and legs closed.
- The symptomatic leg was examined.

legs spread

legs closed

5

- mLDFA (mechanical lateral distal femoral angle)
- MPTA (medial proximal tibial angle)
- FTA (femoral tibial angle)
- JLCA (joint-line convergence angle)
- %WBL (% weight-bearing line)
- HKAA (hip-knee-ankle angle)

Statistical Analysis

- Student's t test was used to compare the two standing positions.
- Significant level was set at 0.05.

D 1' 1	ic parameters	• 1 TTT	1 ^
Radioaranh	ic noromatore	TTT1+h K I	α
\mathbf{N}	II. DATAIHETEIS	WHILL IN	y Plade U
radiograph	to parameters	VVICII ILL	Siago
\mathbf{O}	_		

	Legs spread standing	Legs closed standing	p value
mLDFA (°)	86.7 ± 2.1	86.6 ± 2.3	0.417
MPTA (°)	85.1 ± 2.4	84.9 ± 2.6	<0.05
FTA (°)	176.3 ± 2.9	176.6 ± 2.5	<0.05
JLCA (°, medial)	1.3 ± 1.0	1.4 ± 1.4	0.174
%MA (°)	35.9 ± 13.0	35.0 ± 11.0	0.165
HKAA (°, varus)	-2.6 ± 2.8	-2.7 ± 2.5	0.247

Radiographic parameters with KL grade I

	Legs spread standing	Legs closed standing	p value
mLDFA (°)	86.9 ± 2.3	86.7 ± 2.3	<0.05
MPTA (°)	84.9 ± 2.1	84.7 ± 2.0	<0.05
FTA (°)	176.2 ± 3.2	176.4 ± 3.1	0.109
JLCA (°, medial)	1.5 ± 2.3	1.3 ± 1.1	0.282
%MA (°)	36.0 ± 12.3	35.5 ± 12.9	0.192
HKAA (°, varus)	-2.7 ± 3.0	-2.9 ± 2.9	0.158

Radiographic parameters with KL grade II

	Legs spread standing	Legs closed standing	p value
mLDFA (°)	87.2 ± 2.2	87.0 ± 2.2	0.053
MPTA (°)	85.4 ± 2.4	85.0 ± 2.4	<0.01
FTA (°)	177.0 ± 2.9	177.4 ± 2.8	<0.05
JLCA (°, medial)	1.9 ± 1.2	1.9 ± 1.0	0.323
%MA (°)	32.9 ± 10.8	32.3 ± 10.9	0.159
HKAA (°, varus)	-3.6 ± 2.6	-3.7 ± 3.0	0.076

Radiographic parameters with KL grade III

	Legs spread	Legs closed	p value
	standing	standing	
mLDFA (°)	88.0 ± 1.5	88.3 ± 2.3	0.227
MPTA (°)	83.8 ± 2.3	83.7 ± 2.1	0.205
FTA (°)	180.6 ± 3.9	180.9 ± 3.6	0.209
JLCA (°, medial)	3.3 ± 1.8	3.3 ± 1.8	0.486
%MA (°)	16.8 ± 14.1	16.2 ± 13.5	0.239
HKAA (°, varus)	-7.6 ± 3.2	-7.4 ± 3.2	0.238

DISCUSSION

- Current study indicated %WBL and HKAA showed no significant change, regardless of the standing position.
- A significant difference in %WBL was not found between double-leg and Single-leg weight-bearing conditions [3].
- The mean %WBL of standing position was significantly higher in standing than in supine radiographs [4].

The %WBL is considered a useful parameter when preoperative planning is performed for HTO.

- We investigated the differences in lower limb coronal alignment in different weight-bearing standing positions.
- The %WBL and HKAA were the same in different standing positions.
- It was suggested that the standing position should be taken into consideration in the planning for HTO

REFERENCES

- 1. Miniaci A, Ballmer FT, Ballmer PM, et al. (1989) Proximal tibial osteotomy. A new fixation device. *Clinical Orthopaedics and Related Research*, 246, 250-159.
- 2. Kellgren JH, Lawrence JS. (1957) Radiological assessment of osteoarthrosis. *Annals of the Rheumatic Diseases*, 16, 494-502.
- 3. Bardot LP, Micicoi G, Favreau H, et al. (2022) Global varus malalignment increase from double-leg to single-leg stance due to intra-articular changes. *Knee Surg Sports Traumatol Arthrosc*, 30, 715-720.
- 4. Lazennec JY, Chometon Q, Folinais D, et al. (2017) Are advanced three-dimensional imaging studies always needed to measure the coronal knee alignment of the lower extremity? *International Orthopaedics*, 41(5), 917-924.