ACL R- WITH LET AND HUGHSTON PROCEDURE IN ACL AND MCL INJURY PROVIDES GOOD STABILITY AND LOW REVISION WITHOUT INCREASING THE COMPLICATION RATE: A CASE-CONTROL STUDY AT 8 YEARS OF FOLLOW-UP.

GIAN ANDREA LUCIDI, MD

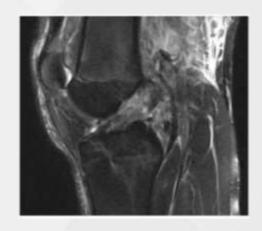
S. Di Paolo, E. Altovino, F.M. Marziano, P. Agostinone, A. Grassi, S. Zaffagnini.

II ORTHOPAEDIC & TRAUMA UNIT RIZZOLI ORTHOPAEDIC INSTITUTE UNIVERSITY OF BOLOGNA BOLOGNA ITALY

DISCLOSURE

- S.Z.:

CONSULTANT FOR SMITH AND NEPHEW AND DEPUY SYNTHES RESEARCH SUPPORT FROM MEDACTA AND DEPUY SYNTHES


- OTHER AUTHORS DECLARES NO C.O.I.

BACKGROUND

ACL + MCL tears:

- ✓ Still no consensus in the management of MCL in combined setting (conservative / repair / MCL reconstruction)
- ✓ MCL surgery → increased stiffness

Figueroa, Schenck et al. JISAKOS 2020

Scandinavian registry study (~20'000 patients):

- ✓ ACL + MCL (conservative) → x2 times of ACL-R failure
- ✓ ACL + MCL (reconstruction) → lower clinical scores compared to ACL-R alone

E. Svantesson et al. KSSTA 2021

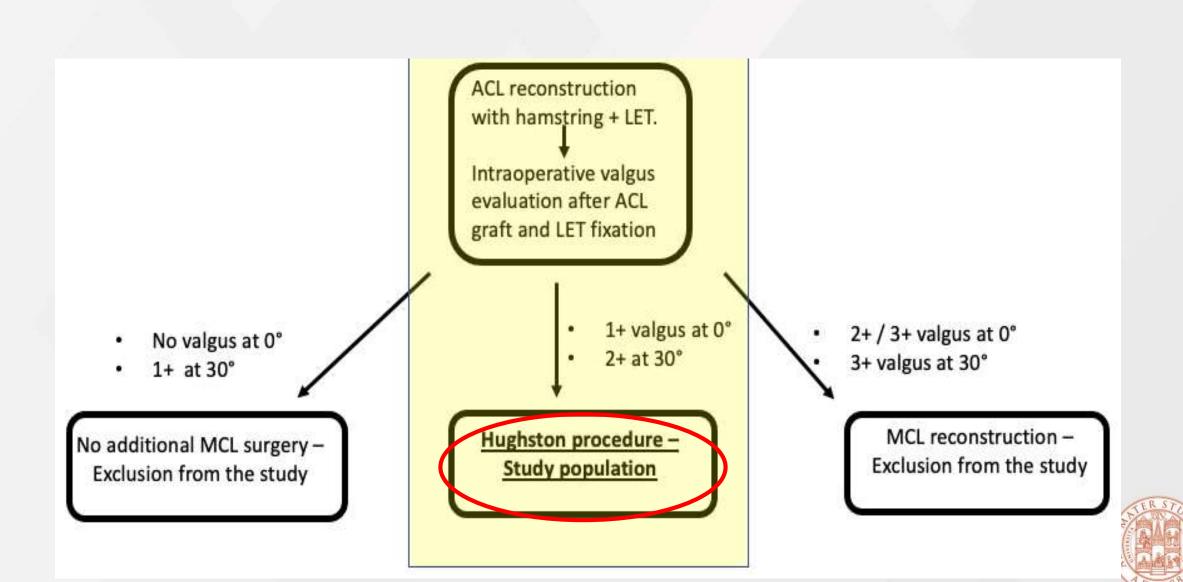
HUGHSTON PROCEDURE

CONSERVATIVE TREATMENT

MCL RECONSTRUCTION

"HUGHSTON PROCEDURE"

- Bridging procedure
- Only proximal MCL tears
 - Moderate valgus laxity
- No need for graft / hardware
 - Less invasive than MCL-R



Hughston et al. AJSM 1996

ACL-MCL TREATMENT ALGORITHM

MATERIAL AND METHODS

RETROSPECTIVE ANALYSIS of 70 PATIENTS (35 PER GROUP) FOLLOW-UP OF 8.1 YEARS (MIN 2)

HUGHSTON group

ACL + MCL injury grade II with chronic instability

ACL-R + LET + «Hughston» procedure

MATCHED 1:1 BY:

 \checkmark AGE (\pm 5 YEARS)

✓ SEX (M/F)

✓ FOLLOW-UP TIME

(± 3 YEARS)

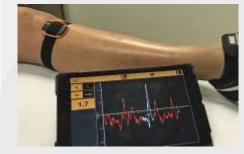
✓ MENISCAL LESIONS
(YES / NO)

CONTROL group

Isolated ACL lesion with NO medial instability

ACL-R + LET

MATERIAL AND METHODS


CLINICAL SCORES

- LYSHOLM score
 - VAS score
- TEGNER score
 - KOOS score

OBJECTIVE EVALUATION

- KiRA Pivot Shift quantification
 - KT-1000

SURGICAL FAILURE:

✓ ACL revision / graft rupture (MRI)

CLINICAL FAILURE

- ✓ PS grade 2+ and/or KiRA \ge 1.5 mm/s² side-to-side and/or
- ✓ KT-1000 side-to-side ≥ 5 mm or surgical failure

RESULTS:

ACL GROUP vs HUGHSTON GROUP:

NO DIFFERENCE IN CLINICAL SCORE

VAS $1.5\pm2.0 \text{ vs } 2.5\pm3.1 \text{ ; p=0.15}$

- TEGNER 6 (3-6) vs 6 (2-7); p=0.88

- LYSHOLM 96 vs 93 ; p=0.20

- KOOS subscales ; p = 0.21 - 0.80

NO DIFFERENCE IN OBJECTIVE STABILITY

- KiRA S-S: $0.2\pm1.2 \text{ vs } 0.6\pm0.9$; p=0.90
- KT 1000 S-S: 1.5 ± 2.4 vs 1.7 ± 2.0 ; p=0.86

- VALGUS ASSESSMENT (HUGHSTON) at 30°:

- 1+ in 4 (12%) patients
- 2+ in 2 (6%) patients

MEASURE	Hughston group	Control group	p-value
KiRA INJ	3.2 (0.9)	3.1 (1.2)	0.713
KiRA CONTRA	2.6 (0.8)	2.9 (1.6)	0.623
KiRA S-S	0.6 (0.9)	0.2 (1.2)	0.898
KT 25 N INJ	6.6 (2.6)	7.2 (2.8)	0.150
KT 25 N CONTRA	5.0 (1.7)	5.7 (2.3)	0.146
KT 25 N S-S	1.7 (2.0)	1.5 (2.4)	0.864
KT man max INJ	9.3 (3.1)	8.8 (2.9)	0.888
KT man max CONTRA	7.2 (1.9)	7.4 (2.1)	0.693
KT man max S-S	2.3 (2.8)	1.5 (2.2)	0.731
ROM active INJ	127.1 (7.1)	130.2 (5.2)	0.102
ROM passive INJ	131.9 (5.2)	130.9 (5.1)	0.405

RESULTS: SURGICAL FAILURE

SURGICAL FAILURE:

√ 2 (6%) PER GROUP (n.s.)

CLINICAL FAILURE:

- √ 5 (17%) ACL GROUP
- √ 7 (25%) IN THE HUGHSTON GROUP (n.s.)

REOPERATION:

- √ 4 (11%) ACL GROUP
- ✓ 5 (14%) IN THE HUGHSTON GROUP (n.s.)
- 1 M.U.A (3%) in the Hughston group.

REOPERATION	HUGHSTON GROUP	CONTROL GROUP
ACL REVISION	2	2
HARDWARE REMOVAL	1	2
MUA	1	0
MENISCUS SCAFFOLD	1	0
TOTAL	5	4

CONCLUSION

- > «ACL+MCL» INJURY TREATED WITH HUGHSTON PROCEDURE
 HAS SAME FAILURE RATES AS ISOLATED ACL-R
- > HUGHSTON PROCEDURE DOES NOT NEGATIVELY AFFECTS
 CLINICAL SCORES
- > NO INCREASED STIFFNESS-RELATED COMPLICATIONS
- COST-EFFECTIVE AND EASY
- > SELECTED CASES!

SHOULD BE INCLUDED IN YOUR SURGICAL ARMAMENTARIUM

KSSTA

Knee Surgery
Sports Traumatology
Arthroscopy

Thank you!

Gian Andrea Lucidi, MD
KSSTA web-editor
Ig: giana90

REFERENCE

Lucidi et al, «Current trends in the medial side of the knee: not only medial collateral ligament (MCL)» J. Orthop Traumat, 2024

> Svantesson E et al,, «Increased risk of ACL revision with non-surgical treatment of a concomitant medial collateral ligament injury: a study on 19,457 patients from the Swedish National Knee Ligament Registry», KSSTA 2019. Knee Surg Sports Traumatol Arthrosc

> Figueroa et al., «Medial side knee injuries: simplifying the controversies: current concepts», JISAKOS 2020

Lucidi et al, «Do Clinical Outcomes and Failure Rates Differ in Patients With Combined ACL and Grade 2 MCL Tears Versus Isolated ACL Tears?: A Prospective Study With 14-Year Follow-up OJSM 2022