Analyzing the Alignment Error in Tibial Tuberosity-Trochlear Groove Distance (TT-TG) in Clinical Scans Using 2D and 3D Methods

Johannes M. Sieberer^{1, 2}, MS, Nancy Park², BS, Albert Rancu², BS, Armita R. Manafzadeh², PhD, Daniel Wiznia², MD, John P. Fulkerson², MD

¹Department of Mechanical Engineering and Material Science, Yale School of Engineering and Applied Science, New Haven, CT 06510

²Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT 06510

Yale school of medicine

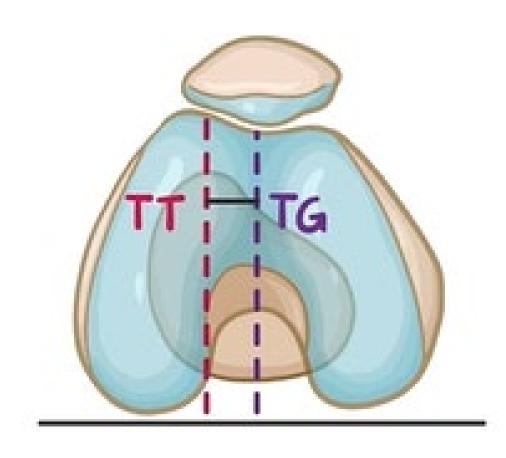
Disclosure

My disclosure along with my co-authors is listed in the disclosure index on the ISAKOS website.

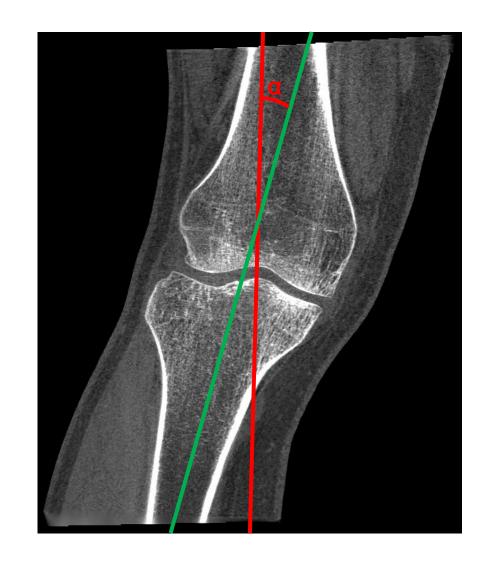
I have nothing to disclose.

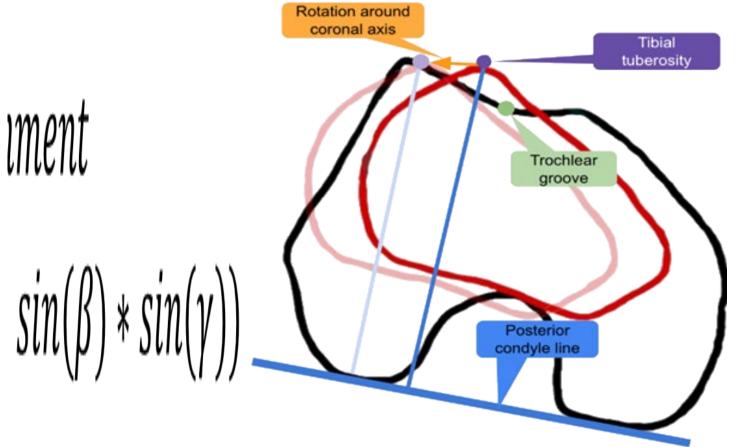
Disclaimer

In the following you will see a quick overview of published in the American Journal of Sports Medicine (AJSM):


Analyzing Alignment Error in Tibial Tuberosity-Trochlear Groove Distance in Clinical Scans Using 2D and 3D Methods

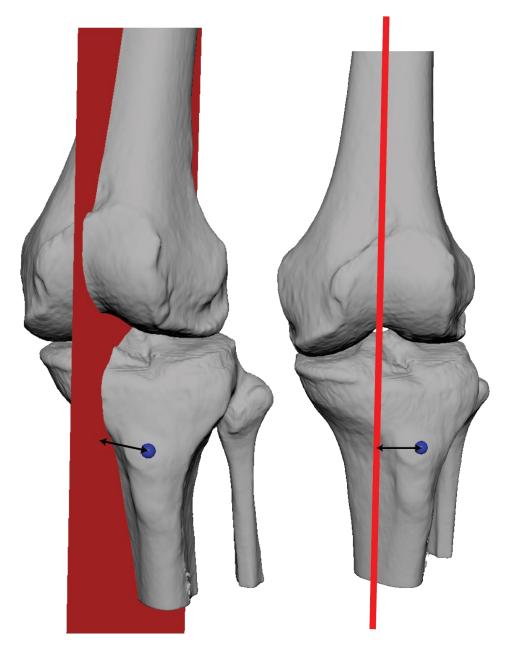
by Sieberer et. al. 2024 [1]




Background

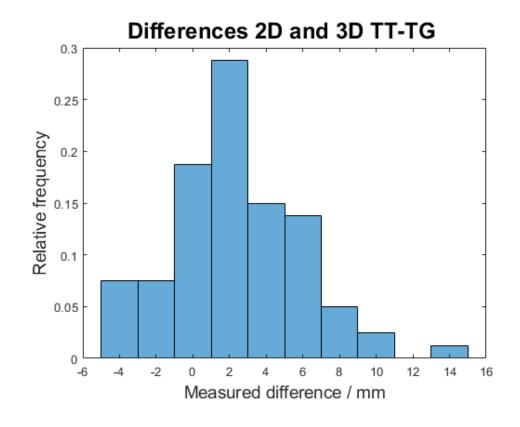
- Tibial tuberosity to trochlear groove distance (TT-TG) is used as the primary surgical decision-making metric in patellar instability.
- It has high interrater reliability, but it is prone to measurement errors caused by patient-scanner gantry alignment [3]
- The error in clinical practice has not been quantified yet.

Alignment Error


Difference due to alignment $\approx d * (\sin(\alpha) * \cos(\gamma) + \sin(\beta) * \sin(\gamma))$ $\alpha, \beta, \gamma \dots Coronal, sagittal, and posterior condyle line (PCL) rotation$

Aim

Development of a 3D method to measure TT-TG independent of patient alignment and quantify the error in clinical scans


Methods

- Creation of 80 landmark sets from patient and control CT scans.
- Calculation of TT-TG based on the tibial longitudinal axis (3D) instead of the scanner's axis utilizing landmarks placed on 3D models.
- Comparison to traditional TT-TG (2D) based on the scanner's axis
- Calculation of interrater reliability (ICC)

Results – TT-TG

- 2D TT-TG significantly higher than 3D TT-TG
 -> caused by a mean coronal leg rotation of 2.4 degrees
- Variance in 3D TT-TG was significantly lower
 -> fewer outliers and reduction of range
- Differences reached from -4.8 to 14.7 mm (negative defined as corrected TT-TG is higher)
- The interrater reliability (ICC) was 0.92 (95%
 CI: 0.81 to 0.97) defined as good to excellent

	TT-TG Range / mm	
Group	2D	3D
Patients	7.2 - 41.0	10.2 - 28.3
Controls	5.2 - 22.1	6.8 - 20.4

Discussion

- Standard TT-TG is susceptible to errors caused by patient alignment in the scanner gantry.
- 3D TT-TG could mitigate or reduce this error, but widespread implementation seems unlikely.
- Physicians should be aware of the inaccuracy of TT-TG and work with their radiologists to improve measurement accuracy and base their decisions on a holistic approach, relying less on TT-TG.
- Reformatting of CT scans is a potential solution. Due to the large error caused by slight angle changes, it should be approached with caution.

Limitations

 Both methods (2D and 3D) depend on accurate landmark placement. The 3D method needs more and is, therefore, more susceptible to placement errors.

 Depending on landmark definition, TT-TG can vary; further studies are needed to define landmarks, so they provide the best insight regarding biomechanics.

Conclusion

The current method of measuring TT-TG is susceptible to errors caused by patient placement. Physicians need to be aware and act accordingly.

References:

[1] Sieberer JM, Park N, Rancu AL, et al. Analyzing Alignment Error in Tibial Tuberosity-Trochlear Groove Distance in Clinical Scans Using 2D and 3D Methods. *Am J Sports Med*. 2024;52(12):2996-3003. doi:10.1177/03635465241279852
[2] THE PATELLOFEMORAL FOUNDATION MASTERS COURSE

https://elearning.patellofemoral.org

[3] Yao L, Gai N, Boutin RD. Axial scan orientation and the tibial tubercle–trochlear groove distance: error analysis and correction. AJR Am J Roentgenol. 2014;202(6):1291-1296.

Thank you!
Johannes M. Sieberer
johannes.sieberer@yale.edu