

Radiographic Investigation of Differences in Static Anterior Tibial Translation With Axial Load Between Isolated ACL Injury and Controls

Michael J Dan, MBBS MSc(res) PhD FRACS(orth)

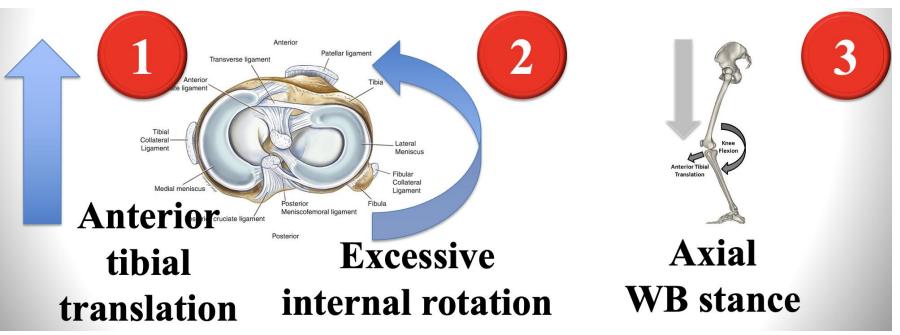
Lingard and Macquarie University Hospital, Australia

Tomas Pineda, MD, Nicolas Cance, MD, Guillaume Demey, MD, and David H. Dejour, MD

Lyon Ortho Clinic France

Faculty Disclosure Information

Nothing to disclosure



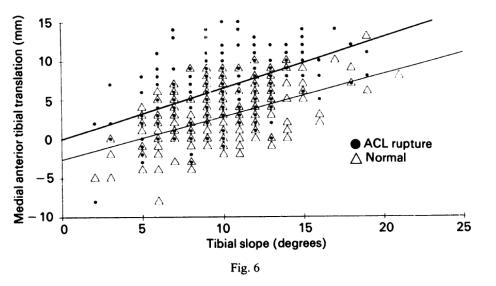
Introduction

Laxity in ACL surgery can be assessed by the response to:

- 1) Translational force Lachman test/ KT-1000
- 2) Excessive internal rotation- Pivot shift
- 3) Axial load= 'Static anterior tibial translation'

Introduction-Axial load measurement

The technique of the lateral monopodal stance test.



Fig

The radiological measurement of medial anterior tibial translation (MATT MS) in a monopodal stance test on a patient with chronic anterior laxity o one knee. On the right knee which had ACL rupture and a damaged media meniscus, the MATT-MS was 10 mm, on the left (normal) knee it was 2 mm giving a difference of 8 mm.

Static anterior tibial translation(SATT) = In vivo measure of ACLR graft stress.

radiographic measure of the amount of tibial translation in response to the physiological axial load during a single-leg stance

Correlation between the slope of the tibial plateau and medial anterior tibial translation in monopodal stance (see text).

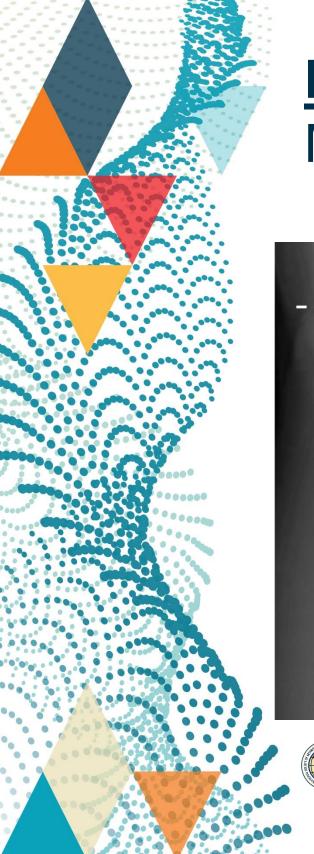
Slope and translation correlated, even if ACL intact

Introduction

H Dejour et al first described SATT but only in ACL injured limb + contralateral limb, no true 'normal' cohort

AIM= establish normal values for SATT compared

to ACL injured patients



Methods

Consecutive series of patients without ligamentous or meniscal injuries between 2019 and 2022 was reviewed.

A matched consecutive cohort nonacute ACL injuries (surgery between 6 and 12 weeks after injury) without concomitant pathology was reviewed.

Methods

Measured;

SATT

+

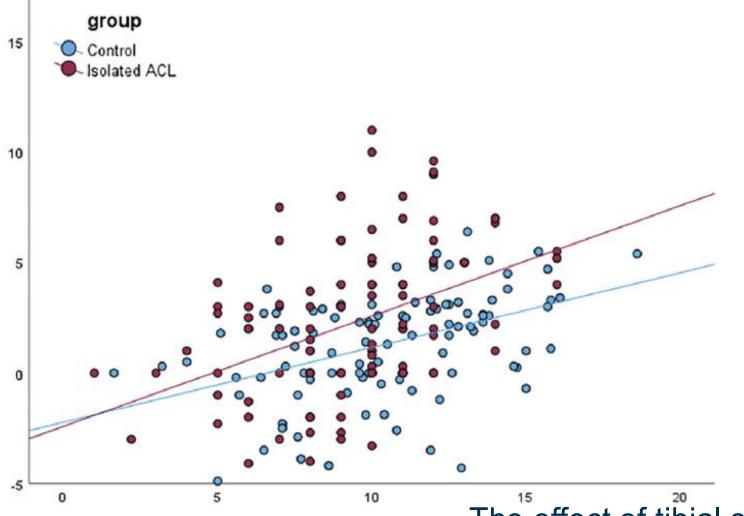
Slope

Regression analysis

Results

Patient Characteristics^a

	Control Cohort	ACL-Injured Cohort	P Value
Number	101	115	_
Male sex	37/36.6%	56/48.7%	.074
Right side	52/51.5%	60/52.2%	.98
Age, y	22.91 (8.02)	32.81 (10.74)	<.001
SATT, mm	1.31(2.44)	2.27(3.36)	.018
PTS, deg	10.61 (3.28)	9.46 (2.85)	.016


ACL patients had greater SATT despite lower mean slope

Mean SATT normal cohort 1.31mm vs 2.27mm in ACL injured patient

Results

Static Anterior Tibial Translation vs Tibial Slope

Line of best fit plotted for:

$$ACL (y = 2.42 + 0.5x)$$

control cohort (y = 2.33 + 0.34x)

Tibial Slope (°)

The effect of tibial slope on SATT was greater in the ACL-injured cohort than in the control cohort

For every 1° increase in slope → 0.5mm increase SATT

Most important finding= reference values for SATT

Control cohort mean SATT 1.31 mm (SD 2.44 mm)

VS.

ACL injury = mean SATT 2.27 mm (SD 3.36 mm)

Discussion

SATT correlated with tibial slope
0.34-0.6mm increase in SATT per 1° of PTS

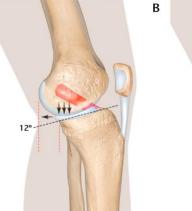
SATT not improved with ACL reconstruction alone

Tibial slope and medial meniscectomy significantly influence short-term knee laxity following ACL reconstruction

David Dejour, Marco Pungitore, Jeremy Valluy, Luca Nover, Mo Saffarini 🔀 & Guillaume Demey

Deflexion slope reducing osteotomy decreases SATT

Reduction in SATT from 11.7 mm to 4.3 mm by reducing the PTS


from 13.2° to 4.4°

KNE

First revision ACL reconstruction combined with tibial deflexion osteotomy improves clinical scores at 2 to 7 years follow-up

David Dejour · Anouk Rozinthe · Guillaume Demey · ReSurg

Received: 22 March 2023 / Accepted: 12 June 2023 / Published online: 29 July 2023
© The Author(s) under exclusive licence to European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2023

Conclusion

The effect of slope on weightbearing anterior tibial translation was greater in the ACL-injured population compared with the control cohort.

A reference SATT value should be considered in the preoperative planning of ACLR revision surgery when TDO is needed.

References

Dejour H, Bonnin M. (1994) – Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br. 76:745-749.

Schmitz RJ, Kim H, Shultz SJ. (2010) – Effect of axial load on anterior tibial translation when transitioning from non-weight bearing to weight bearing. Clin Biomech. 25(1):77-82.

Dejour D, Pungitore M, Valluy J, et al. (2019) – Preoperative laxity in ACL-deficient knees increases with posterior tibial slope and medial meniscal tears. Knee Surg Sports Traumatol Arthrosc. 27(2):564-572.

Bernhardson AS, Aman ZS, Dornan GJ, et al. (2019) – Tibial slope and its effect on force in anterior cruciate ligament grafts. Am J Sports Med. 47(2):296-302.

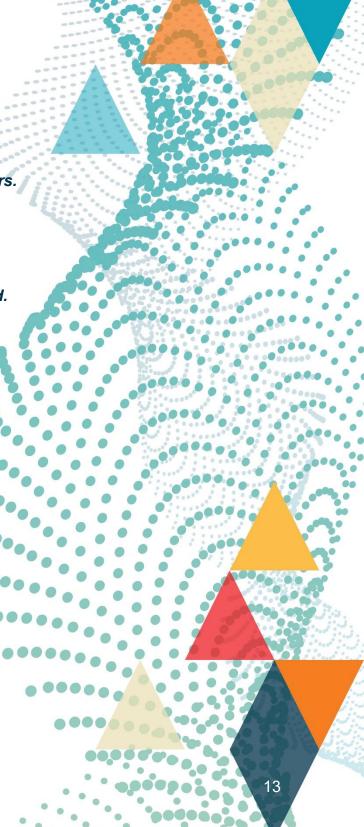
Imhoff FB, Mehl J, Comer BJ, et al. (2019) – Slope-reducing tibial osteotomy decreases ACL-graft forces and anterior tibial translation under axial load. Knee Surg Sports Traumatol Arthrosc. 27(10):3381-3389.

Yamaguchi KT, Cheung EC, Markolf KL, et al. (2018) – Effects of anterior closing wedge tibial osteotomy on ACL force and knee kinematics. Am J Sports Med. 46(2):370-377.

Song GY, Ni QK, Zheng T, et al. (2020) – Slope-reducing tibial osteotomy combined with primary ACL reconstruction improves stability. Am J Sports Med. 48(14):3486-3494.

Dejour D, Saffarini M, Demey G, et al. (2015) – Tibial slope correction combined with second revision ACL produces good knee stability. Knee Surg Sports Traumatol Arthrosc. 23(10):2846-2852.

Dan MJ, Cance N, Pineda T, et al. (2023) – Four to 6 degrees is the target posterior tibial slope after tibial deflection osteotomy. Arthroscopy.


Marouane H, Shirazi-Adl A, Hashemi J. (2015) – Role of tibial posterior slope in knee joint mechanics and ACL force during gait. J Biomech. 48(10):1899-1905.

Li Y, Hong L, Feng H, et al. (2014) – Posterior tibial slope influences static anterior tibial translation in ACL reconstruction. Am J Sports Med. 42(4):927-933.

Beldame J, Mouchel S, Bertiaux S, et al. (2012) – Anterior knee laxity measurement: comparison of Telos, Lerat, and GNRB. Orthop Traumatol Surg Res. 98(7):744-750.

Grassi A, Macchiarola L, Urrizola Barrientos F, et al. (2019) – Findings in multiple ACL failures: steep slope, subluxation, and meniscal deficiency. Am J Sports Med. 47(2):285-295.

