

General Prediction Theory For Anterior Cruciate Ligament Graft Sizing

Alexander Shao-Rong Pang¹, Matthew Song Peng Ng², Zi Qiang Glen Liau²

¹Yong Loo Lin School of Medicine, National University of Singapore, Singapore ²Department of Orthopaedic Surgery, National University Hospital, Singapore

Faculty Disclosure Information

No Disclosures.

Introduction

- Predicting hamstring graft size before anterior cruciate ligament (ACL) reconstruction is crucial
- Aids in anticipating and correcting inadequate graft diameter during procedures
- Helps avoid graft failure
- There is a higher risk of graft failure if the graft is lesser than 9 mm in diameter^{1,2}

Most published models using MRI PACS are not feasible and practical:

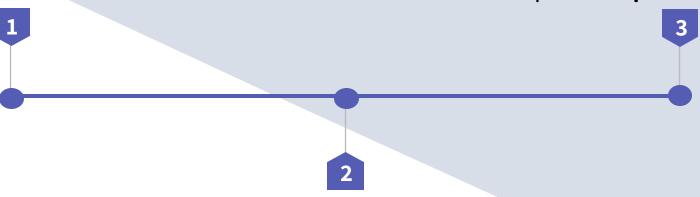
- 1. Recruiting the help of a radiologist for measurement^{1,2}
- 2. Usage of specialized 3D software or the freehand region of interest (lasso) tool that is not widely available on all MRI PACS systems^{1,2}
- 3. Using 3T MRIs to predict the measurement costly and not commonly performed³

^{1.} Ashford, et al. 2018. "Predicted Quadriceps vs. Quadrupled Hamstring Tendon Graft Size Using 3-Dimensional MRI." The Knee 25 (6): 1100–1106.

^{2.} Perez et al. 2020. "Preoperative Prediction of Autologous Hamstring Graft Diameter in Anterior Cruciate Ligament Reconstruction." Revista Espanola de Cirugia Ortopedica Y Traumatologia 64 (5): 310–17.

^{3.} Hamada, et al. 1998. "Cross-Sectional Area Measurement of the Semitendinosus Tendon for Anterior Cruciate Ligament Reconstruction." Arthroscopy: The Journal of Arthroscopic & Related Surgery: Official Publication of the Arthroscopy Association of North America and the International Arthroscopy Association 14 (7): 696–701.

Aims of Study


- 1. Develop a General Prediction Theory, based on a generalised algorithm
 - Predicts final ACL graft diameter for single and double tendon hamstring grafts consisting any number of folds
- 2. Evaluate our algorithm with a regression model adjusting for patient and surgical factors
- 3. Assess algorithm's sensitivity, specificity, and discriminative ability, defining adequate graft size as ≥9mm

Methodology

Retrospective review of 105 patients who underwent primary ACL reconstruction with single or double tendon grafts at a tertiary hospital between January 2023 and June 2024

Measurements were run through our predicted graft diameter formula

Data of the **actual graft sizes** used intraoperatively were extracted and compared to **predicted graft sizes**

Two independent and blinded evaluators with no prior radiology posting experience measured the cross-sectional lengths and breadths of both semitendinosus and gracilis grafts using standard MRI PACS for all included patients

How the ACL Hamstring Graft Sizes were Predicted

Figure 1: Sagittal T2-weighted images of the affected knee was first used to identify the axis of the pes tendons.

A and B represent 2 different patients with differing ACL axes.

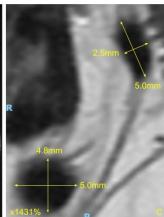
Figure 2: Sagittal cuts were scrolled laterally along the medial tibial plateau until a clear demarcation can be appreciated.

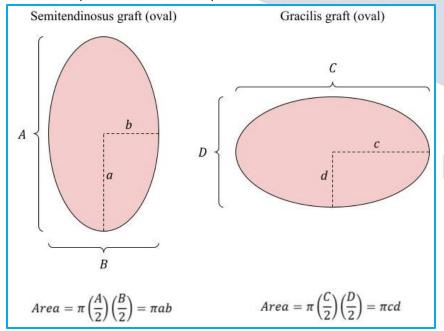
An annotation line parallel to the axis of the pes tendons was placed originating from the Liau ridge⁴ on the posterior border of the subchondral surface of the tibial plateau and extending proximally by 30mm.

Figure 3: From the proximal aspect of the 30mm line, the closest axial MRI cut is used.

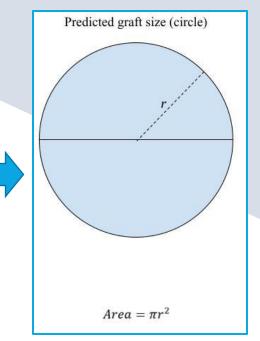
Cross-sectional lengths and breadths of the Figure 2 semitendinosus tendon and gracilis tendon were determined from 10x magnification.

Figure 1




Figure 3

Mathematical Proof For ACL Graft Prediction Theory


 πr^2 = Total area of predicted graft = x(semitendinosus area) + y(gracilis area) = $\pi \left(\frac{ABx + CDy}{4} \right)$

$$r^2 = \frac{ABx + CDy}{4}$$

$$r = \left(\sqrt{\frac{ABx + CDy}{4}}\right)$$

Ovoid cross-sectional profiles of semitendinosus and gracilis tendons

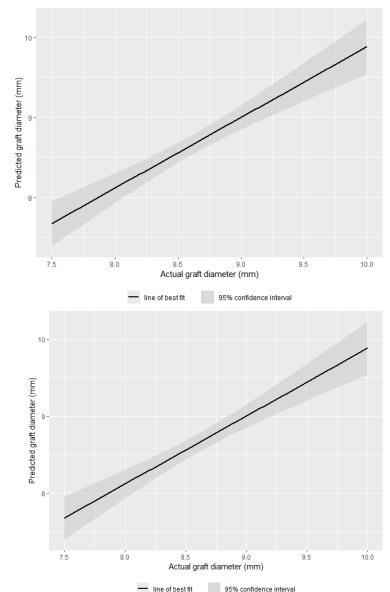
Circular profile of predicted ACL graft

 \therefore Diameter of predicted graft size (2r)

$$= 2\sqrt{\frac{ABx + CDy}{4}}$$
$$= \sqrt{(ABx + CDy)}$$

Results

Correlation between predicted and actual graft diameter


Pearson's correlation coefficient between the predicted and actual graft diameter of 105 patients was 0.602 (p < 0.01), which shows a strong positive correlation

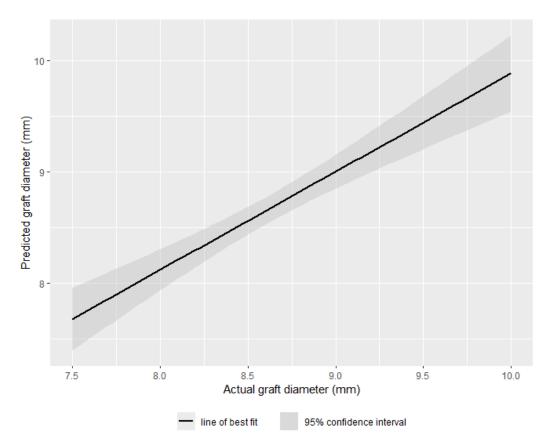
Univariate and Multivariate linear regression between predicted and actual graft diameter

Adjusted for age, gender, BMI, graft type (single vs double tendon)

Univariate linear regression

• Larger the predicted graft diameter, larger the actual graft diameter ($\mathbb{R}^2 = 0.356$, p < 0.01)

Results


Univariate and Multivariate linear regression between predicted and actual graft

diameter

Multivariate linear regression

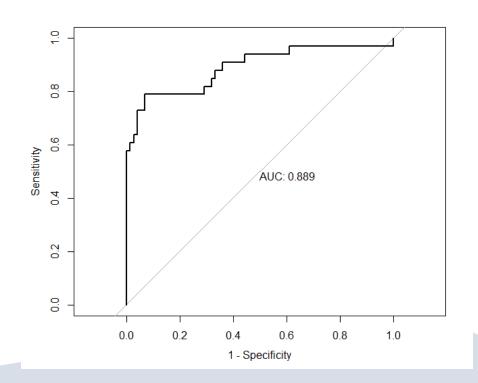
Odds of having a bigger actual graft diameter is higher if patient is:

- Male (p = 0.00160)
- Overweight (p = 0.0130)
- Single tendon graft (p = 0.000799)
- Age does not influence actual graft diameter (p = 0.0850)

Results

Specificity and sensitivity of our method

Our method yields a **high sensitivity of 95.8%** and a moderate specificity of **69.7%** if we define an adequate actual graft size as ≥9mm


Discriminatory ability of our method

An area under receiver-operating characteristic (ROC) curve plotted with the respective logistic regression models shows good discrimination (AUC = 0.889)

High percentage agreement = **82.9%**

Cohen's kappa = 0.578 (p < 0.0001)

Combined	Actual graft diameter (mm)	
Predicted graft diameter (mm)	< 9	≥9
< 9	69 (95.8% sens)	10
≥ 9	3	23 (69.7% spec)

Discussion

- Our method allows users to determine the likely exact value of the axial graft diameter compared to other methods which only provides a dichotomized outcome of whether a graft is sufficient ^{1,2}
- Our method yielded a high sensitivity of 95.8%
- Superior and comparable to reported studies
 - Hamada et al. 74% sensitivity³
 - Erquicia et al. 85.7% sensitivity⁵

Factors affecting graft size

- Odds of having a bigger actual graft diameter are higher if patient is
 - Male larger muscle mass and tendon size
 - Overweight increased body mass and hence, tendon size
 - Single tendon graft involves harvesting thicker grafts

^{1.} Ashford, et al. 2018. "Predicted Quadriceps vs. Quadrupled Hamstring Tendon Graft Size Using 3-Dimensional MRI." The Knee 25 (6): 1100–1106.

^{2.} Perez et al. 2020. "Preoperative Prediction of Autologous Hamstring Graft Diameter in Anterior Cruciate Ligament Reconstruction." Revista Espanola de Cirugia Ortopedica Y Traumatologia 64 (5): 310–17.

^{3.} Hamada, et al. 1998. "Cross-Sectional Area Measurement of the Semitendinosus Tendon for Anterior Cruciate Ligament Reconstruction." Arthroscopy: The Journal of Arthroscopic & Related Surgery: Official Publication of the Arthroscopy Association of North America and the International Arthroscopy Association 14 (7): 696–701.

^{5.} Erquicia, et al. 2013. "How to Improve the Prediction of Quadrupled Semitendinosus and Gracilis Autograft Sizes with Magnetic Resonance Imaging and Ultrasonography." The American Journal of Sports Medicine 41 (8): 1857–63

Conclusion

- Our method does not require any specialized software
- Can be reliably done even by junior members of the surgical team
- Allows users to determine the likely exact value of the axial graft diameter with a high sensitivity of 95.8%
- Provides much more information about the magnitude of the difference compared to the ideal hamstring size
- Assists in discussing the appropriate graft options for the patient and better facilitates pre-operative planning

Limitations

- 1. Not considering the variation in degree of knee flexion when the MRI was taken
- 2. There may be the use of **3T MRIs** in clinical practice
- 3. Our **specificity is 69.7**%

References

- 1. Ashford, et al. 2018. "Predicted Quadriceps vs. Quadrupled Hamstring Tendon Graft Size Using 3-Dimensional MRI." The Knee 25 (6): 1100–1106.
- 2. Perez et al. 2020. "Preoperative Prediction of Autologous Hamstring Graft Diameter in Anterior Cruciate Ligament Reconstruction." Revista Espanola de Cirugia Ortopedica Y Traumatologia 64 (5): 310–17.
- 3. Hamada, et al. 1998. "Cross-Sectional Area Measurement of the Semitendinosus Tendon for Anterior Cruciate Ligament Reconstruction." Arthroscopy: The Journal of Arthroscopic & Related Surgery: Official Publication of the Arthroscopy Association of North America and the International Arthroscopy Association 14 (7): 696–701.
- 4. Liau ZQG, Ng MSP, Low SSE, Chin BZ, Hui JHP, Kagda FHY. A novel practical method to predict anterior cruciate ligament hamstring graft size using preoperative MRI. Knee Surg Relat Res. 2024 Apr 4;36(1):17. doi: 10.1186/s43019-024-00216-7. PMID: 38576029; PMCID: PMC10993534.
- 5. Erquicia, et al. 2013. "How to Improve the Prediction of Quadrupled Semitendinosus and Gracilis Autograft Sizes with Magnetic Resonance Imaging and Ultrasonography." The American Journal of Sports Medicine 41 (8): 1857–63