

Increased Patient Travel Distance for Revision TKA is Associated with Higher Re-revision Rates

Yunseo Linda Park BS, Matthew Como BS, Alexander Hoffman MD, Akeem Williams BS, Logan Finger MD, Kenneth L. Urish MD PhD, Michael J. O'Malley MD, Brian A. Klatt MD, Johannes F. Plate MD PhD

Disclosures

I have no financial conflicts of interest to disclose

Purpose

Study Aim:

 Analyze the influence of travel distance on complication rates, mortality rates, and patient reported outcomes (PROs) following revision total knee arthroplasty (TKA)

Hypothesis:

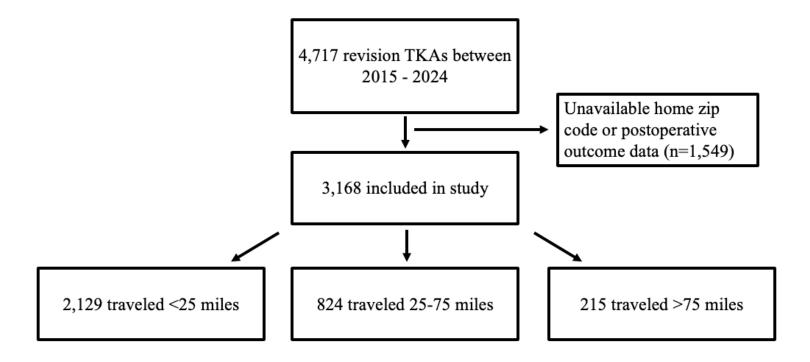
 Greater travel distances are associated with higher complication rates and inferior PROs

Methods

Retrospective review (custom data and analytics platform)

- Inclusion criteria:
 - Underwent revision TKA at UPMC, 2015-2024
- Exclusion criteria:
 - Unavailable patient home zip code data
 - Unavailable postoperative outcome data
- Vincenty formula to calculate distance between patient home zip code and coordinates of hospital

Methods - Outcomes


- Complication rates: subsequent re-revision, death, mechanical, pulmonary embolism, sepsis, wound infection, surgical site infection
- PROs: Knee injury and osteoarthritis outcome score (KOOS), Patient-reported outcome measurement information system (PROMIS10)
 - Preoperative, 3-mo, 6-mo, 1-year follow-up

Results – Study Population

Results – Demographics

	< 25 miles (n=2129)	25-75 miles (n=824)	> 75 miles (n=215)	P value
Demographics				
Age at time of revision TKA (years)	67.1 ± 10.0	66.7 ± 9.7	65.8 ± 10.3	0.23
Female sex, n (%)	1258 (59)	437 (53)	112 (52)	<0.01*
BMI (kg/m ²) (n=3087)	33.4 ± 9.5	34.5 ± 17.4	32.7 ± 6.6	0.41
Travel distance in miles	8.1 ± 7.9	44.4 ± 14.4	111.3 ± 105.7	<0.01*
Elixhauser score (n=2756)	3.0 ± 1.9	2.8 ± 1.9	2.5 ± 1.8	<0.01*

Results – Complication Rates

	< 25 miles (n=2129)	25-75 miles (n=824)	> 75 miles (n=215)	P value
Complications, n (%)				
Any Complication	270 (13)	92 (11)	22 (10)	0.36
Subsequent re-revision	274 (13)	116 (14)	41 (19)	0.04*
Death	11 (1)	2 (0)	2 (1)	0.28
Mechanical	93 (4)	37 (5)	11 (5)	0.88
Pulmonary embolism	26 (1)	8 (1)	2 (1)	0.81
Sepsis	81 (4)	30 (4)	5 (2)	0.55
Wound infection	82 (4)	25 (3)	7 (3)	0.54
Surgical site infection	38 (2)	10 (1)	1 (1)	0.22
Mortality rates, n (%)				
1-year mortality	49 (2)	13 (2)	7 (3)	0.26
Readmit rates, n (%)				
90-day readmit	301 (14)	110 (13)	31 (14)	0.84

Results – Odds Ratio

Table 2. Predictor of a subsequent re-revision

	Odds ratio	Confidence interval	P value	
Travel distance	1.002	1.000-1.004	0.07	

Conclusion

- Increased travel distance associated with higher rates of subsequent re-revision
 - Odds ratio was not significant (clinical risk)
- Similar PROs, readmission rates, mortality rates
- Re-revision TKAs are common, technically demanding
 - Higher complication rates and less favorable outcomes
- Impact of travel distance and potentially access to care
- Establishment of regional "Centers of Excellence" for revision TKA is feasible

References

1 - Bornes, T. D., Puri, S., Neitzke, C. C., Chandi, S. K., Gausden, E. B., Sculco, P. K., & Chalmers, B. P. (2024). High Rates of Early Septic Failure, But Low Rates of Aseptic Loosening after Revision Total Knee Arthroplasty with Contemporary Rotating-Hinge Prostheses. *The Journal of arthroplasty*, S0883-5403(24)00836-2. Advance online publication. https://doi.org/10.1016/j.arth.2024.08.013

- 2 Roof, M. A., Lygrisse, K., Shichman, I., Marwin, S. E., Meftah, M., & Schwarzkopf, R. (2023). Multiply revised TKAs have worse outcomes compared to index revision TKAs. *Bone & joint open, 4*(5), 393–398. https://doi.org/10.1302/2633-1462.45.BJO-2023-0025.R1
- 3 Belt, M., Hannink, G., Smolders, J., Spekenbrink-Spooren, A., Schreurs, B. W., & Smulders, K. (2021). Reasons for revision are associated with rerevised total knee arthroplasties: an analysis of 8,978 index revisions in the Dutch Arthroplasty Register. *Acta orthopaedica*, 92(5), 597–601. https://doi.org/10.1080/17453674.2021.1925036
- 4 Nin, D. Z., Chen, Y. W., Talmo, C. T., Hollenbeck, B. L., Mattingly, D., Niu, R., Chang, D. C., & Smith, E. L. (2024). Revision Total Knee Arthroplasty in an Outpatient Setting: A Growing Alternative. *The Journal of arthroplasty*, S0883-5403(24)00519-9. Advance online publication. https://doi.org/10.1016/j.arth.2024.05.047

Thank you!

