

Restoration of Prearthritic Coronal Alignment following Ligament-guided medial UKA Yielded Improved Patientreported Outcomes

A retrospective study of 618 knees

Roderick J.M. Vossen^{1,2}, MD; Joost A. Burger³*, MD; Gaby V. ten Noever de Brauw^{1,2}, BS; Tarik Bayoumi^{1,2}, MD; Jake A. Fiore¹, BE; Lindsey V. Ruderman¹, BA; Hendrik A. Zuiderbaan⁴, MD PhD; Andrew D. Pearle¹, MD

* Shared first authorship

¹Hospital for Special Surgery, New York, USA

²Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands

³Charité – Universitatsmedizin, Berlin, Germany

⁴Medische Kliniek Velsen, Velsen-Noord, The Netherlands

I (and/or my co-authors) have something to disclose.

All relevant financial relationships have been mitigated.

Co-author, Hendrik A. Zuiderbaan – paid consultant Smith&Nephew Co-author, Andrew D. Pearle - paid consultant Smith&Nephew & Depuy Synthes

BACKGROUND AND OBJECTIVE

Background

• The importance of re-developing superficial medial collateral ligament (sMCL) biomechanics during medial UKA and its' role in facilitating normal knee kinematics might be understated in current surgical techniques. ¹

• The recently introduced ligament-guided, kinematic alignment technique for medial UKA seeks to resurface the medial compartment, reapproximate pre-arthritic tension in the sMCL through flexion and extension, and achieve central tracking of the femoral component over the tibial component. 1,2

Objective

- To evaluate patient-reported outcomes and implant survival rate following the ligament-guided medial UKA and compare these outcomes between CPAK phenotypes and sagittal medial tibial wear patterns.
- This could provide further insights into the application of the ligament-guided medial UKA technique.

METHODS AND MATERIALS

The study comprised 618 knees (mean follow-up 4.1 \pm 1.5 years, mean age 62.4 \pm 8.2 years, 53.4% male), selected from a single-surgeon's registry.

Patient selection

- Robot-assisted, ligament-guided, medial UKA between 2008 and 2016.
- End-stage medial OA ($KL \ge 3$) with an unaffected lateral compartment.
- Follow-up > 2 years.
- Available complete data on patient-reported outcomes (KOOS-JR, Kujala, patient satisfaction) and implant failure.

Radiographic evaluation

- Pre- and post-operative CPAK phenotype ³ figure 1, figure 2
 - aHKA = MPTA LDFA
 - JLO = MPTA + LDFA
- Pre-operative sagittal medial tibial wear pattern ⁴ figure 3
 - Maximal tibial wear = (distance anterior cortex to PMTW) (AP distance)
 - If maximal tibial wear > 55% of AP distance = posteromedial wear (indicator for ACL deficiency)

Figure 1.

Figure 2.

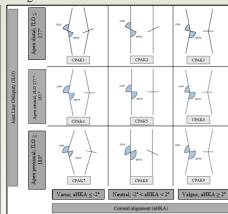
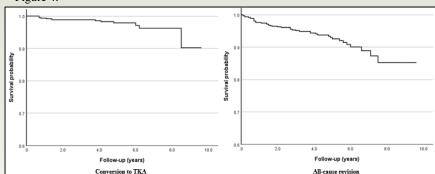
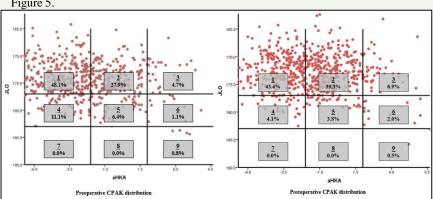



Figure 3.



SUMMARY OR RESULTS

Figure 5.

Implant survivorship – figure 4

- 4-year conversion to TKA rate 98.9% [98.4% 99.3%].
 - Mean time to conversion -3.5 ± 2.5 years.
- 4-year all-cause revision rate 94.3% [93.3% 95.3%].
- No significant differences in survival rates among CPAK phenotypes or between antero- or posteromedial tibial wear.

Radiographic evaluation – figure 5, table 1

- Highly variable pre- and post-operative CPAK phenotype distribution.
- Patients with restored pre-arthritic coronal alignment and pre-operative CPAK phenotype had a greater Kujala score.

Table 1.

					Re-do
	N (%) of knees	KOOS JR.	Kujala	Satisfaction	Surgery
Restoration of CPAK phenotype					
Restored	277 (53.8%)	84.7 ± 15.7	84.5 ± 14.9	91.8%	92.1%
Altered	238 (46.2%)	83.6 ± 16.2	81.8 ± 15.5	88.6%	90.8%
P-value		0.374×	0.033×*	0.177	0.554

Patient-reported outcomes at a mean FU of 4.1 years. * significant value, p > 0.05.

CONCLUSION

- This study demonstrated that restoration of pre-arthritic coronal alignment and pre-operative CPAK phenotype resulted in a significantly higher Kujala score.
- No other significant differences in patient-reported outcomes or implant survival rates were observed among CPAK phenotypes or between antero- or posteromedial tibial wear.
- This may suggest that ligament-guided medial UKA is equally beneficial for all knee phenotypes and medial tibial wear patterns as long as pre-operative CPAK phenotype is preserved post-operatively.

Reference to full-text article

Vossen RJM, Burger JA, Ten Noever de Brauw GV, et al. Preservation of prearthritic coronal knee phenotype and prearthritic coronal alignment yielded improved Kujala scores following ligament-guided medial unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2024;32(12):3185-3197. doi:10.1002/ksa.12282

REFERENCES

- Roche, M., Pearle, A.D.: Robotic arm-assisted unicompartmental knee arthroplasty: preoperative planning and surgical technique. Am J Orthop (Belle Mead NJ). 38, 10–5 (2009)
- Pearle, A.D., P.F., Kendoff, D.O.: Robot-Assisted Unicompartmental Knee Arthroplasty. J Arthroplasty. 25, 230–237 (2010). https://doi.org/10.1016/j.arth.2008.09.024

- MacDessi, S.J., Bellemans, J., Chen, D.B.: Coronal Plane Alignment of the Knee (CPAK) classification. Journal of bone and joint surgery. British volume. 103-B, 329–337 (2021). https://doi.org/10.1302/0301-620X.103B2.BJJ-2020-1050.R1
- 2. Scott, C.E.H., Keenan, O.J.F.: Patterns of cartilage loss and anterior cruciate ligament status in end-stage osteoarthritis of the knee. Bone Joint J. 102-B, 716–726 (2020). https://doi.org/10.1302/0301-620X.102B6.BJJ-2019-1434.R1