

Does the Use of Lateral Extra-Articular Tenodesis Reduces Residual Knee Rotatory Laxity After ACL Reconstruction?

A Retrospective Randomized Case-Control Study Using Kinematic Rapid Assessment (Kira)

Giron F., MD, PhD

Boncinelli D., MD; Franco P., MD; Salomone L., MD.

Department of Traumatology and Orthopaedics, AOU Careggi, Florence

Faculty Disclosure Information

Nothing to disclosure

Introduction

The aim of the study was to evaluate whether the addition of lateral extra-articular tenodesis (LET) to anterior cruciate ligament reconstruction (ACLR) can improve knee stability in athletes with a minimum two-year follow-up.

Methods

60 patients fulfilled inclusion criteria

■ **G1** (control): Arthroscopic ACLR

■ **G2** (case): Arthroscopic ACLR + LET

 Level I athletes with at least 3 training sessions and 1 match per week

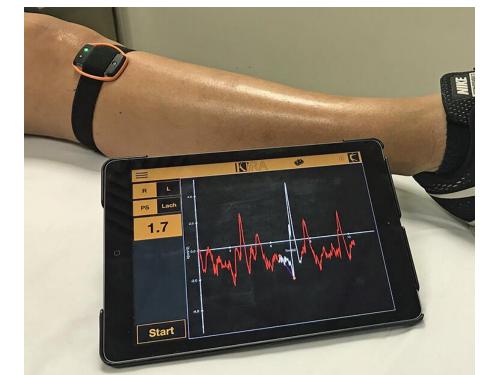
ACLR with hamstring graft (5 strand),
 OUT-IN technique

Evaluated at 3, 6, 9 weeks, 4, 6 and 12 months. Average follow-up 34 months

	G 1	G2
Patients	30	30
Male	23	27
Female	7	3
Age (average)	33	22
Range	20-54	17-49
Right side	15	15
Left side	15	15
Timing of surgery (month)	10,8	4
	G1	G2
Medial meniscus	11	10
Medial meniscus Partial meniscectomy	11 6	10 4
Partial meniscectomy	6	4
Partial meniscectomy Suture	6 5	4 6

Methods

Single surgeon, ACLR with G-ST (5 strand), out-in technique with Endobutton CL + Xtendobutton fixation on femoral side (S&N) and metal interference screw and staple on tibial side


LET according to Coker-Arnold technique

Postoperative x-rays and at final follow-up

• IKDC, Tegner, Lysholm scores, KiRA test, radiographic assessments.

Indipendent observer

The return to sport was 82.1 % at final follow-up in G1, 98.33 % of the total in G2

The remaining 17.9 % of the patients (12 cases, 11 in G1 and 1 in G2) did not resume the same level of sporting activity for personal reasons

	G1	G2	χ ²
Lysholm-Tegner (100)	96,47	97,2	n.s.
Range	86-100	81-100	
IKDC score (100) subjective	94,53	98,62	n.s.
Range	77-100	82,8-100	
Tegner pre op.	7	9	
Δ Tegner	82,10%	98,33%	p=0.003
Activity level preop.			
1	0	0	
2	3	1	
3	23	12	
4	4	17	

	G1	G2
IKDC score objective		
Α	25	27
В	5	3
С	0	0
D	0	0
Lachman test		
Α	28	29
В	2	1
С	0	0
D	0	0
Pivot Shift test		
Α	21	26
В	9	4
С	0	0
D	0	0

Results

Adding LET increases return to the same sport level (Δ Tegner χ^2 test p<0.05)

Adding LET reduces post-operative AP drawer at Lachman test, although it wasn't statistical significant (p=0.6755)

Adding LET reduces residual rotatory instability (Pivot shift test, t-test p<0.05)

KiRA examination	G1	G2	
Lachman test			t-test
Α	26	28	n.s.
В	4	2	n.s.
С	0	0	n.s.
D	0	0	n.s.
Δ Lachman	-0,39	-0,076	n.s
Std. err.	0,47	0,49	
Pivot Shift test			
A	28	30	n.s.
В	2	0	n.s.
С	0	0	n.s.
D	0	0	n.s.
Δ Pivot shift	0,47	-0,18	p=0.03
Std. err.	0,21	0,27	

Results

 Widening of femoral and tibial tunnels showed in no case an increase of more than 25% of the original,

 No statistically significant differences between the two groups were found

Tunnel Widening (mm)	G1	G2	
Tibial tunnel			T-test
7,5	7	0	
8	9	18	
9	12	12	
10	2	0	
Δ widening range	1,2	1,4	p=0,5
Femoral tunnel			
7,5	2	0	
8	12	13	
9	15	17	
10	1	0	
Δ widening range	0,51	0,54	p=0,9

Conclusion

In patients treated with ACLR + LET, we found statistically significant improvement in postoperative pivot shift control and return to high-level sports activity.

The use of the KiRA accelerometer allowed us to quantify the anterior and rotational translation value of the tibia after ACLR.

References

- Claes S, Vereecke E, Maes M, et al (2013) Anatomy of the anterolateral ligament of the knee. J Anat 223:321–328. https://doi.org/10.1111/joa.12087
- Sonnery-Cottet B, Thaunat M, Freychet B, et al (2015) Outcome of a combined anterior cruciate ligament and anterolateral ligament reconstruction technique with a minimum 2-year follow-up. Am J Sports Med 43:1598–1605. https://doi.org/10.1177/0363546515571571
- Napier RJ, Feller JA, Devitt BM, et al (2021) Is the KiRA Device Useful in Quantifying the Pivot Shift in Anterior Cruciate Ligament—Deficient Knees? Orthop J Sport Med 9:1–7. https://doi.org/10.1177/2325967120977869
- Runer A, Roberti di Sarsina T, Starke V, et al (2021) The evaluation of Rolimeter, KLT, KiRA and KT-1000 arthrometer in healthy individuals shows acceptable intra-rater but poor inter-rater reliability in the measurement of anterior tibial knee translation. Knee Surgery, Sport Traumatol Arthrosc 29:2717–2726. https://doi.org/10.1007/s00167-021-06540-9
- Firth AD, Bryant DM, Litchfield R, et al (2022) Predictors of Graft Failure in Young Active Patients Undergoing Hamstring Autograft Anterior Cruciate Ligament Reconstruction With or Without a Lateral Extra-articular Tenodesis: The Stability Experience. Am J Sports Med 50:384–395. https://doi.org/10.1177/03635465211061150

