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Background
• Tibial spine fractures are common in the pediatric population 

due to the integrity of their subchondral epiphyseal bone. 

• Two techniques predominate the tibial spine fracture repair: 

screw fixation and suture fixation. 

• Most studies in porcine or adult human bone suggest suture 

fixation is superior to screw fixation, but these tissue types may 

be poor surrogates for pediatric bone.

• No prior study has evaluated fixation methods in human 

pediatric knees. 



Aims and Hypothesis

• This study aimed to quantify the biomechanical properties of 
two-screw and two-suture tibial spine fracture repair in 
pediatric knees.

• We hypothesized that these repair techniques would have 
statistically different failure loads when compared in 
pediatric tissue. 



Methods

1. Age and laterality matched pediatric knee specimens were 
randomly assigned to either a two-screw or two-suture 
fixation.

2. An osteotome induced a standardized Meyers-Mckeever Type 
III tibial spine fracture.

3. Fractures were repaired with either screws or sutures.

4. Specimens were then mounted for biomechanical testing.

5. One-sample t-tests were used to assess differences between 
ultimate failure loads, cyclic stiffness, and cyclic elongation.



Screw Fixation:

1. For knees assigned to screw fixation, each fracture was reduced with 
two 1.25-mm K-wires drilled into the lateral and medial borders of 
the ACL-fracture construct and fracture bed at 45-degree angles. 

2. Then, K-wires were over drilled using a 2.7-mm drill to a depth of 
40mm. 

3. Next, two 35 mm–length, 4 mm–diameter, partially threaded 
cannulated screws were placed over the K-wires and tightened to 
adequate purchase

4. Appropriate convergent screw trajectory and depth were assessed via 
anteroposterior, lateral, and axial fluoroscopy.



Screw Fixation:

▪ (A) Specimen with representative 
circumferential marks made at 2mm 
away from the ACL insertion. 

▪ (B) Screws placed in a convergent 
trajectory through the medial and lateral 
aspects of the fracture fragment. 

▪ (C) Anteroposterior fluoroscopy of the 
construct. 

▪ (D) Screw repaired construct loaded into 
the Instron 5944 for biomechanical 
testing.



Suture Fixation:

1. For knees assigned to suture fixation, a tibial ACL guide and 2.4mm drill-tip 
guide wire were used to drill two medial-entry bony tunnels spaced 1cm apart 
and 1cm distal to the articular surface of the medial tibial plateau

2. Bony tunnels exited into both the medial and lateral base of the manually-
reduced fracture fragment. Drill exit holes at the level of the ACL insertion 
into the fracture fragment were consistently 1cm apart and straddled the 
anteromedial ACL bundle. 

3. Next, two No. 2 FiberWire sutures were passed through the base of the ACL 
with a curved needle. One suture was passed through the anterior one-third of 
the ACL, the other through the posterior one-third. 

4. The sutures were then pulled through the bony tunnels with a suture passer 
and secured over the 1cm bony bridge with five alternating surgical knots.



Suture Fixation:

▪ (A) Elevation of the anterior portion of the 
fracture fragment with the standard 
osteotome.

▪ (B) Suture passing through the anterior and 
posterior thirds of the ACL. 

▪ (C) Suture fixation and reduction of the 
fracture and ACL. 

▪ (D) Suture repaired construct loaded on the 
Instron 5944 for biomechanical testing.



Biomechanical Loading Protocol

1. Specimens were potted in epoxy putty and mounted for biomechanical testing on an 

electromechanical load frame at approximately thirty degrees of flexion to simulate typical ACL 

loading conditions. 

2. After loading, each testing construct was subjected to cyclic preconditioning, which consisted of 

20 cycles of loading between 5 and 25N at a rate of 60 cycles per minute. 

3. Next, a cyclic loading protocol was applied to each specimen. This included 500 cycles between 5 

and 75N at a crosshead speed of 100mm per minute. 

4. Upon the completion of cyclic loading, samples recovered for thirty minutes. Finally, a load-to-

failure protocol was conducted at a rate of 0.5mm per second.

5. Biomechanical properties for each construct were recorded and compared by univariate analysis.



Results:

Biomechanical Property Screws Sutures P-Value

Mean Ultimate Failure Load in Newtons (SD) 143.52 (41.97) 135.35 (43.17) 0.760

Mean Stiffness During Load to Failure Test in Newton-Millimeters (Sd) 21.79 (10.58) 13.83 (6.82) 0.076

Mean Elongation Over the Course of Cyclic Loading in Millimeters (SD) 5.02 (2.43) 8.46 (3.99) 0.069

Number of Specimens Surviving Cyclic Loading 5 5 <0.9

• A total of twelve age (range: 6 years - 10 years) and laterality-matched pediatric 
cadaveric knees were tested. 

• The repair groups had identical mean (8.3 years) and median (8.5 years) ages 
and an identical number of samples of each laterality. 



Conclusions:

▪ Screw and suture fixation of tibial spine fractures in pediatric 
bone are biomechanically comparable, contrasting with 
previous literature. 

▪ This study is the first to evaluate different fixation methods in 
pediatric bone and demonstrates that failure loads are 
statistically and practically lower than adult cadaveric and 
porcine bone, such that inferences drawn from previous studies 
may be misleading. 

▪ Further investigation should be conducted into repair constructs 
that are more biomechanically sound in pediatric bone.
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