# Advanced Active Robotic TKA ; A learning curve of surgical time and alignment accuracy 

Yong-Beom Park ${ }^{1}$, Young-Bong Ko ${ }^{2}$, Dong-Hoon Lee ${ }^{1}$, Hyun-Chul Nam ${ }^{1}$, Seong Hwan Kim ${ }^{3}$

Department of Orthopedic Surgery,
${ }^{1}$ Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine
${ }^{2}$ Jounachim Hospital
${ }^{3}$ Chung-Ang University Hospital, Chung-Ang University College of Medicine

## Disclosure

## Yong-Beom Park

Consultant, Robot for Knee Arthroplasty, Curexo Inc.
Consultant, Cartilage Regeneration using ADSVF, Roket Health Care Inc.

## Several Robotics for TKA

$5+11 \pi_{9}$
$=2 f l e$



## Purpose

-to determine the learning curve necessary to minimize the operative time and to evaluate the alignment accuracy when using advanced active robotic TKA

## Methods: Robotic Surgery

- TKA using newly advanced active robotic system $\checkmark$ Robot (CUVIS-Joint ${ }^{\oplus}$; CUREXO Inc.)
$\checkmark$ Image(CT)-base, active



## Methods: Patients \& Outcome variables

- 60 consecutive primary TKAs
$\checkmark$ Age: 73.4 years, Sex: 54/6 (F/M), BMI: 27.1 kg/m²
$\checkmark$ Preoperative HKA angle: varus $7.7^{\circ}$
- Operation time: tourniquet (incision to closure)
- Radiological evaluation
$\checkmark$ Alignment lower leg and component



## Methods: Statistical Analysis

- Group classification
$\checkmark 60$ cases of robotic TKAs
$\checkmark 6$ groups according to the order of surgery
(10 patients per group)
>Kruskal-Wallis test \& post-hoc comparison
- Cumulative summation analysis (CUSUM)


## Results: Operation Time




|  | Group1 | Group2 | Group3 | Group4 | Group5 | Group6 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OP time | 138 | 130 | 133 | 130 | 116 | 111 | $<0.001$ |

## Results: Lower Limb Alignment



|  | Criteria | Robot $(\mathrm{n}=60)$ |
| :---: | :---: | :---: |
| HKA angle | $\mathbf{1 8 0} \mathbf{o}^{\circ} \pm \mathbf{3}^{\circ}$ | $\mathbf{5 7}(\mathbf{9 5 . 0 \%})$ |


|  | HKA angle |
| :--- | :--- |
| Preop | 7.7 varus |
| Planning | 0 |
| Postop | 1.6 varus |


|  | Group1 | Group2 | Group3 | Group4 | Group5 | Group6 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| HKA angle | 1.9 | 1.5 | 1.7 | 1.5 | 1.6 | 1.4 | 0.126 |

## Results: Component Alignment

|  | Criteria $^{\circ}$ | Proportion(n=60) | angle |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{\alpha}$ | $90^{\circ} \pm 3^{\circ}$ | $59(98.3 \%)$ | $89.1^{\circ}$ |
| $\boldsymbol{\beta}$ | $90^{\circ} \pm 3^{\circ}$ | $58(96.7 \%)$ | $89.3^{\circ}$ |
| Г | $0^{\circ} \pm 5^{\circ}$ | $56(93.3 \%)$ | $2.8^{\circ}$ |
| $\boldsymbol{\delta}$ | $87^{\circ} \pm 3^{\circ}$ | $55(91.7 \%)$ | $8^{\circ}$ |


|  | Group1 | Group2 | Group3 | Group4 | Group5 | Group6 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{\alpha}$ | 89.1 | 89.3 | 89.0 | 89.2 | 89.1 | 89.0 | 0.845 |
| $\boldsymbol{\beta}$ | 89.4 | 89.1 | 89.3 | 89.3 | 89.2 | 89.5 | 0.548 |
| $\boldsymbol{Y}$ | 3.0 | 2.7 | 2.9 | 2.8 | 2.7 | 2.7 | 0.779 |
| $\boldsymbol{\delta}$ | 85.5 | 86.1 | 85.3 | 85.6 | 85.4 | 85.7 | $\mathbf{0 . 1 2 8}$ |

## Conclusion

- Robotic TKA with advanced active robotics
$\checkmark$ Operative time: 40 cases for learning curve
$\checkmark$ Accuracy: no learning curve
>Favorable accuracy
:Lower limb alignment
:Component alignment, especially coronal plane


## References

- Gofton WT, Solomon M, Gofton T, Page A, Kim PR, Netting C et al (2016) What do reported learning curves mean for orthopaedicsurgeons? Instr Course Lect 65:633-643
- Gunaratne R, Pratt DN, Banda J, Fick DP, Khan RJK, Robertson BW. Patient Dissatisfaction Following Total Knee Arthroplasty: A Systematic Review of the Literature. J Arthroplasty 2017;32(12):3854-3860
- Kaper B (2020) Learning curve and time commitment assessment in the adoption of NAVIO roboticassisted total knee arthroplasty.Orthopaedic proceedings. J Bone Joint Surg Br 102(Suppl 1):59
- Kayani B, Konan S, Huq SS, Tahmassebi J, Haddad FS (2019) Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg Sports Traumatol Arthrosc 27:11321141Liow MHL, Chin PL, Pang HN, Tay DK, Yeo SJ.
- Keggi J, Plaskos C (2017) Learning curve and early patient satisfaction of robotic-assisted total knee arthroplasty. Orthopaedic proceedings. J Bone Joint Surg Br 99(Suppl 4):59-59
- THINK surgical TSolution-One(®) (Robodoc) total knee arthroplasty. Sicot j 2017;3:63
- St Mart JP, Goh EL. The current state of robotics in total knee arthroplasty. EFORT Open Rev 2021;6(4):270-279

