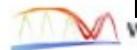
Arthroscopic labral reconstruction provides comparable mid-term clinical outcomes compared to labral refixation.

A matched-pair controlled study on patients with femoroacetabular impingement syndrome



Hirotaka Nakashima¹, Yoichi Murata¹, Yohei Matsushita¹, Shinichiro Takada¹, Keisuke Nakayama¹, Hokuto Fukuda¹, Akinori Sakai², Soshi Uchida¹

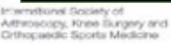
- 1. Department of Orthopedics Surgery, Wakamatsu Hospital of University of Occupational and Environmental Health
 - 2. Department of Orthopedics Surgery, University of Occupational and Environmental

Disclosure

I have no conflict of interest about this study. One of co-authors have something to disclose.

All relationships are not relevant to this presentation

Background: Role of acetabular labrum


Important role of stability 1-3)

- Static function
- Dynamic function: suction and sealing function

→Labral reconstruction is used as a preservation technique to restore joint stability in cases of an irreparable labral tear. ⁴⁾

Labral reconstruction

Risk factors of labral reconstruction in primary hip arthroscopic surgery for Femoroacetabular impingement syndrome (FAIS)

- · Nakashima, Uchida et al. AJSM 2019 ⁵⁾
- Age \ge 45 years (OR 8.83), BMI \ge 23.1 kg/m² (OR13.05), VCA \ge 36° (OR 19.03)
 - · DR Maldonado, BG Domb et al. AJSM 2019 6)
- Tonnis grade 1, LCEA, Alpha angle, Age, BMI

To compare the clinical results of different surgical procedures, it was considered necessary to perform a matched study of patients.

Purpose

To compare the clinical outcomes of arthroscopic labral reconstruction with those of labral refixation in the mid-term in a patient-matched study.

Materials and Methods

Patient selection cohort flow diagram

40 patients

underwent hip arthroscopic labral reconstruction and FAIS correction surgery between March 2009 and December 2015

10 patients: excluded because of below reasons

- Bilateral surgery and labral reconstruction at one side, n = 4
- Osteoarthritis (Tönnis grade 2), n = 2
- Revision surgery, n = 4

30 patients: met inclusion criteria

Lost follow-up within 5 years, n = 5

25 patients: include this study

Patients matched protocol: age (±4 year), sex, body mass index (±3.0kg/m²) and Tönnis grade

Patients matched in this study

Reconstruction n=15

Refixation n=30

underwent hip arthroscopic labral refixation and FAIS correction surgery during same periods

Main Outcome Measures

- ✓ Patient-reported outcome scores (PROs): Nonarthritis Hip Score (NAHS), modified Harris Hip Score (mHHS), Vail Hip Score, International Hip Outcome Tool 12 score (iHOT12)
- ✓ Additional surgery: Revision arthroscopy THA
- Radiographic osteoarthritis (OA) progression

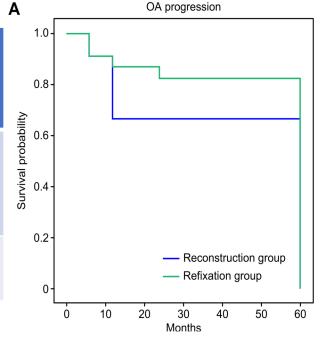
Results: Patients matched analysis

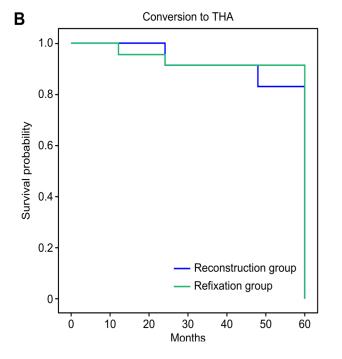
Baseline demographic and radiographic variables in patient-matched analysis

	Reconstructi on (n = 15)	Refixation (n = 30)	P value*
Age, y	48.6 ± 11.7	47.5 ± 11.9	0.754
BMI, kg/m ²	24.3 ± 3.1	23.1 ± 3.4	0.185
Male	8 (53.3%)	16 (53.3%)	1.000
Follow-up duration	76.5 ± 18.8	68.6 ± 11.3	0.546
α angle, deg	66.9 ± 7.6	69.8 ± 10.2	0.249
LCE angle, deg	39.9 ± 7.6	32.1 ± 5.4	< 0.001
VCA angle, deg	39.0 ± 4.6	31.3 ± 7.6	0.005
Tönnis grade 1	4 (26.7%)	8 (26.7%)	0.632

Comparison of PROs in patient-matched analysis

	Reconstruction (n = 15)	Refixation (n = 30)	P value
NAHS			
Preop	66.3 ± 15.8	62.1 ± 21.0	0.680
2 y	87.5 ± 13.4	89.2 ± 17.9	0.427
5 y	87.9 ± 14.8	85.6 ± 22.5	0.694
Last F/U	84.9 ± 14.9	86.1 ± 23.5	0.377
mHHS			
Preop	71.4 ± 11.2	72.8 ± 15.5	0.789
2 y	93.1 ± 11.2	94.1 ± 11.1	0.273
5 y	96.7 ± 4.8	92.6 ± 13.3	0.734
Last F/U	95.9 ± 5.2	91.7 ± 14.7	0.951
Vail Hip Score	87.1 ± 14.5	86.2 ± 22.8	0.682
iHOT12	84.9 ± 22.1	84.1 ± 27.9	0.413




Results: Patients matched analysis

Comparison of the rate of complications in patient-matched analysis

Survival curves between both groups in patient-matched analysis

y	Y*				
		Reconstruction	Refixation	P value*	
À		(n = 15)	(n = 30)		,
	Revision	2 (13.3%)	2 (6.7%)	0.571	
X	AS				3
	THA	2 (13.3%)	5 (16.7%)	0.547	

Discussion: summary of this study

- Arthroscopic labral reconstruction and FAIS correction surgery resulted in satisfactory outcomes at a minimum 5-year follow-up in a middle-aged population.
- 2. These clinical outcomes were comparable to those in the refixation group at mid-term follow-up.
- 3. Radiographic OA progression and complications were comparable between both groups at the final follow-up

Discussion: Mid-term outcomes of FAI

Good outcomes of following hip arthroscopic surgery for FAIS in the mid-term 7, 8)

However, there are a few reports of minimum 5-year outcomes following arthroscopic labral reconstruction for FAIS

Domb et al. reported that there were no significant differences in PROs between the labral reconstruction group and the repair group in a matched study with a minimum 5-year follow-up. ⁹

Philippon et al. the minimum 10-year outcome for arthroscopic labral reconstruction with ITB autograft. They reported that the survival rate of patients with more than 2 mm of joint space was 90%. ¹⁰

*OA progression and conversion to THA

In this study

OA progression: 26.7 % in reconstruction vs 23.3 % in refixation

THA conversion: 13.3 % in reconstruction vs 16.7 % in refixation

Honda et al. reported that patients in their 50 s and 60 s have a higher risk of both THA conversion and progressive osteoarthritis than those younger than 50 years old. 11)

Perets et al. reported that the minimum 5-year survival after hip arthroscopic surgery was 72.3% in patients ≥50 years, while in patients <50 years, the same authors reported that the minimum 5-year survivorship was 92.4%. ^{12,13)}

The mean age in this study (48.6 y in reconstruction, 47.5 y in refixation) is also high. The age at the time of surgery in this cohort study may be related to survival after surgery.

Limitation

- Retrospective study without a conservative treatment control group
- The sample size was relatively small
 - The Vail Hip score and iHOT12 score were evaluated only at final follow-up because these PROs in the Japanese version were only adopted recently

Conclusion

Arthroscopic labral reconstruction provides comparable mid-term clinical

outcomes with labral refixation for the treatment of patients with FAIS.

References

- 1. Crawford MJ, Dy CJ, Alexander JW, et al. The 2007 Frank Stinchfield Award. The biomechanics of the hip labrum and the stability of the hip. Clin Orthop Relat Res. 2007; 465:16-22.
- 2. Ferguson SJ, Bryant JT, Ganz R, et al. The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model. J Biomech. 2000; 33(8):953-960.
- 3. Ferguson SJ, Bryant JT, Ganz R, et al. An in vitro investigation of the acetabular labral seal in hip joint mechanics. J Biomech. Feb 2003; 36(2):171-178.
- 4. Philippon MJ, Briggs KK, Hay CJ, et al. Arthroscopic labral reconstruction in the hip using iliotibial band autograft: technique and early outcomes. Arthroscopy. Jun 2010; 26(6):750-756.
- 5. Nakashima H, Tsukamoto M, Ohnishi Y, et al. Clinical and Radiographic Predictors for Unsalvageable Labral Tear at the Time of Initial Hip Arthroscopic Management for Femoroacetabular Impingement. Am J Sports Med. Jul 2019; 47(9):2029-2037.
- 6. Maldonado DR, Chen JW, Walker-Santiago R, et al. Radiographic and Demographic Factors Can Predict the Need for Primary Labral Reconstruction in Hip Arthroscopic Surgery: A Predictive Model Using 1398 Hips. Am J Sports Med. Jan 2020; 48(1):173-180.
- 7. Nwachukwu BU, Beck EC, Kunze KN, et al. Defining the Clinically Meaningful Outcomes for Arthroscopic Treatment of Femoroacetabular Impingement Syndrome at Minimum 5-Year Follow-up. Am J Sports Med. Mar 2020; 48(4):901-907.
- 8. Ohlin A, Ahlden M, Lindman I, et al. Good 5-year outcomes after arthroscopic treatment for femoroacetabular impingement syndrome. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA. Apr 2020; 28(4):1311-1316.
- 9. Domb BG, Battaglia MR, Perets I, et al. Minimum 5-Year Outcomes of Arthroscopic Hip Labral Reconstruction With Nested Matched-Pair Benchmarking Against a Labral Repair Control Group. The American Journal of Sports Medicine. 2019; 47(9):2045-2055.
- 10. Philippon MJ, Arner JW, Crawford MD, et al. Acetabular Labral Reconstruction with Iliotibial Band Autograft: Outcome and Survivorship at a Minimum 10-Year Follow-up. J Bone Joint Surg Am. 2020; 102(18):1581-1587.
- 11. Honda E, Utsunomiya H, Hatakeyama A, et al. Patients aged in their 70s do not have a high risk of progressive osteoarthritis following arthroscopic femoroacetabular impingement correction and labral preservation surgery. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA. 2020; 28(5):1648-1655.
- 12. Perets I, Chaharbakhshi EO, Mu B, et al. Hip Arthroscopy in Patients Ages 50 Years or Older: Minimum 5-Year Outcomes, Survivorship, and Risk Factors for Conversion to Total Hip Replacement. Arthroscopy. 2018; 34(11):3001-3009.
- 13. Perets I, Chaharbakhshi EO, Shapira J, et al. Hip Arthroscopy for Femoroacetabular Impingement and Labral Tears in Patients Younger than 50 Years: Minimum Five-year Outcomes, Survivorship, and Risk Factors for Reoperations. J Am Acad Orthop Surg. Feb 15 2019; 27(4):e173-e183.

