DIFFERENCES IN TEMPOROSPATIAL HOP CHARACTERISTICS BETWEEN LIMBS AT RETURN TO SPORT AFTER ACL RECONSTRUCTION

Gavia A BS¹, Werner D PT DPT²,3, Wellsandt M PT DPT², Rosenthal M PT DSc ATC², Tao M MD ${ }^{2,4}$, Wellsandt E PT DPT PhD ${ }^{2,4}$
${ }^{1}$ School of Medicine, Creighton University
${ }^{2}$ Department of Health and Rehabilitation Sciences, UNMC
${ }^{3}$ Medical Sciences Interdepartmental Area, UNMC
${ }^{4}$ Department of Orthopaedic Surgery, UNMC

Mandatory Faculty Disclosure

- Nothing to disclose for this project

Significance of Problem

- Return-to-sport (RTS) time is a primary concern after ACL reconstruction
- Hop tests can be successfully completed despite presence of movement compensations
- Understanding movement compensations can aid orthopedic surgeons and physical therapists during decision making process for RTS

Purpose \& Hypothesis

- Assess hop biomechanics between injured and uninjured limb after ACL reconstruction
- We hypothesized that patients who have undergone ACL reconstruction would present with shorter flight times and longer stance times in the injured limb compared to the uninjured limb

Yellow Bracket: Stance Time, Red Line: Flight Time

Experimental Design

- 35 participants
- Ages 10-25 years
- Within 5-15 months of ACL reconstruction
- No prior knee injury or concomitant posterior cruciate ligament reconstruction
- Plan to return to 50 hours/year of cutting or pivoting sports

Experimental Design Continued

- All participants demonstrated scores of $>90 \%$ symmetry on physical testing and $>90 \%$ on both self-reported knee function scores
- Return-to-sport components
- Unilateral quadriceps strength
- Two measures of self reported knee function
- IKDC Subjective Knee Form 2000
- Global Rating Scale
- Four single-legged hop tests
- Single hop, triple hop, crossover hop, and $6 m$ timed hop

Experimental Design Continued

Two Trials on Each Limb

- Single Hop
- Triple Hop
- 6m Timed Hop
*Note: Crossover hop not completed due to narrow width of walkway

Variables of interest

- Flight time
- Stance time
- Flight-to-stance ratio
- Paired t-tests were used to compare hop characteristics between limbs
- Effect sizes were calculated to evaluate interlimb differences

Participant Characteristics

Age at surgery (years)	17.5 ± 3.0			
Sex (F/M)	51.4\%/48.6\%			
Mean RTS Time (mo)	10.8 ± 2.8			
Graft Types	Quadriceps 12/35 (34\%)	Patellar $15 / 35$ (43\%)	Hamstring 6/35 (17\%)	IT Band 2/35 (6\%)

Results

Flight Time

ES= Effect Size
Small Effect $=>0.2$
Medium Effect $=>0.5$
Large Effect $=>0.8$

Triple Hop = avg of total flight time per limb
6m Timed Hop = avg of flight time per hop per limb

Results Continued

	Involved	Uninvolved	p-value	Effect Size
Avg. Hop Distance				
6m Timed Hop (cm)	135.9 ± 21.3	140.6 ± 21.8	<0.001	0.710
Stance Time				
Triple Hop (sec)	0.726 ± 0.091	0.706 ± 0.088	0.162	
$6 m$ Timed Hop (sec)	0.265 ± 0.030	0.262 ± 0.028	0.140	

ES= Effect Size

Small Effect $=>0.2$
Medium Effect $=>0.5$
Large Effect $=>0.8$

Results Continued

ES= Effect Size
Small Effect $=>0.2$
Medium Effect $=>0.5$
Large Effect $=>0.8$

Triple Hop = avg of total flight time per limb divided by avg of total stance time per limb 6m Timed Hop = avg of flight time per hop per limb divided by avg of stance time per limb

Conclusion

- Interlimb differences in temporospatial hop test characteristics were present in patients who passed return-to-sport testing
- Differences in flight time were larger than differences in stance time
- Movement patterns are not be restored despite meeting traditional benchmarks
- Measuring hop distance and total time (6m timed hop) may be insufficient ${ }^{1,2}$
- Future work: Investigate the impact of hop characteristics to aid ACL recovery through interventions

Thank You!

Rheumatology Research Foundation

Advancing Treatment | Finding Cures

RJ Barber, MS, ATC, LAT, CSCS Clinical Research Coordinator

Alyx Jorgensen, BS PhD \& DPT Student

Shelby Schelkopf, BS UNMC Medical Student

Matt McManigal, MS Research Technologist

Dave Werner, PT, DPT PhD Student

Austin Post, BS UNMC Medical Student

Tyler Kallman, MD UNMC Ortho Resident

Daniel Podsiadlo, PT, DPT

References

${ }^{1}$ Kotsifaki, A., Korakakis, V., Whiteley, R., Van Rossom, S., \& Jonkers, I. (2020). Measuring only hop distance during single leg hop testing is insufficient to detect deficits in knee function after ACL reconstruction: a systematic review and meta-analysis. British journal of sports medicine, 54(3), 139-153.
 biomechanics: time to discuss hop distance as decision criterion for return to sport after ACL reconstruction?. British journal of sports medicine, 56(5), 249-256.
Evans S, Shaginaw J, Bartolozzi A. Acl reconstruction - it's all about timing. Int J Sports Phys Ther. 2014 Apr;9(2):268-73. PMID: 24790787; PMCID: PMC4004131.
Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR Jr, Paletta GA Jr. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014 Oct;42(10):2363-70. doi: 10.1177/0363546514542796. Epub 2014 Aug 1. PMID: 25086064.
Sancheti, P., Razi, M., Ramanathan, E. B. S., \& Yung, P. (2010). Injuries around the knee-Symposium. British Journal of Sports Medicine, 44(Suppl 1), i1-i1.

