Deep Medial Collateral Ligament Reconstruction of the Knee Restores Rotational Stability Throughout Full Range of Motion While Contemporary MCL Reconstruction Only Does in Extension

Kyle Borque, Shuyang Han, Jonathan Gold, Ethan Sij, Mitzi Laughlin, Andrew Amis, Andy Williams, Walter Lowe, Philip Noble

ISAKOS • June 18-21, 2023
Disclosures

• Kyle Borque
 – Paid Consultant for Xiros
 Support received from Xiros

• Andrew Amis
 – Embody Orthopaedics Ltd: IP royalties; Stock or stock Options
 Orthonika Ltd: Stock or stock Options
 Smith & Nephew: Paid presenter or speaker; Research support

• Andy Williams
 – Speaker for Smith and Nephew
 Unpaid Consultant for Innovate Orthopaedics
 Stock received from Innovate Orthopaedics
 Support received from Smith and Nephew
 Financial Support received from Part funding clinical fellow- Smith and Nephew
 Editorial or Governing board of American Journal of Sports Medicine
 Board of Directors member for Innovate Orthopaedics

• Walter Lowe
 – Arthrex, Inc: Paid consultant; Paid presenter or speaker
 DJ Orthopaedics: Paid consultant

• Philip Noble
 – International Society for Technology in Arthroplasty: Board or committee member
 Joint View, LLC: Stock or stock Options
 Springer: Publishing royalties, financial or material support
 Stryker: IP royalties
 Zimmer: IP royalties; Paid consultant
Background and Purpose

• Injuries to the medial ligament complex result in valgus and anteromedial rotatory instability (AMRI).

• Contemporary MCL reconstruction techniques focus on the superficial MCL to restore valgus stability while frequently ignoring the importance of the deep MCL in controlling tibial external rotation.

• The purpose of this study was to assess and compare the ability of a contemporary MCL reconstruction (single strand LaPrade) and a deep MCL (dMCL) reconstruction to restore rotational and valgus stability to the knee.
Methods

- Six pairs fresh-frozen cadaveric knee specimens with intact soft tissue envelopes

- Distal femur and tibia were potted in PVC pipes to facilitate biomechanical testing using a customized multi-axial knee activity simulator
Methods

• Four states were tested:
 – 1) Intact
 – 2) After sectioning of the sMCL and dMCL
 – 3) Contemporary MCL reconstruction as described by LaPrade et al
 – 4) dMCL reconstruction

• Four loading conditions:
 – 1) 8 Nm valgus torque
 – 2) 5 Nm tibial external rotation torque
 – 3) 90N anterior drawer
 – 4) Combined 90 N anterior drawer plus 5 Nm tibial external rotation torque

• Multiple flexion angles 0°, 20°, 40°, 60° and 90°
Reconstruction Techniques

Single Strand LaPrade (SSL)
• Femoral fixation posterior and proximal to medial epicondyle. Fixed on the tibia at the proximal tibial fixation point.

dMCL reconstruction
• Femoral fixation distal and posterior to medial epicondyle. Running antero-distally to tibial fixation point of the deep MCL.

SSL = white and green graft
dMCL = solid white graft
Results

- Transection of the sMCL and dMCL resulted in increased laxity at all flexion angles for
 - Valgus torque
 - External rotation torque
 - Combined anterior drawer plus external rotation
Valgus

- SSL reconstruction restored valgus stability at 0°, 20°, and 40° (p<0.01)
- dMCL reconstruction did not restore valgus stability at any flexion angle

* Significantly different from intact; # Significantly different from deficient
External Rotation

• SSL reconstruction restored external rotation stability at 0° and 20° (p<0.01).

• dMCL reconstruction restored external rotation stability (all p<0.05) throughout all degrees of flexion.

* Significantly different from intact; # Significantly different from deficient
90N Anterior Drawer

- At 20° dMCL technique restored anterior translation to values observed in the intact state, whereas the SSL technique translation remained significantly larger ($p<0.05$).
- Comparing the dMCL and SSL reconstruction techniques showed no significant differences at 40° and 60° of flexion.

* Significantly different from intact; # Significantly different from deficient
Combined Anterior Drawer plus External Rotation

- SSL reconstruction did not restore stability at any degree of flexion (p>0.05).
- dMCL restored stability back to the intact level at 20° and improved stability between 40° and 90° flexion.

* Significantly different from intact; # Significantly different from deficient
Conclusion

• Deep MCL reconstruction restored rotational stability to the knee throughout range of motion but did not restore valgus stability.

• Single Strand LaPrade reconstruction restored stability only near full extension (0° and 20°).

