

Accuracy of Advanced Active Robot for TKA ; A Cadaveric Study

Yong-Beom Park¹, Young-Bong Ko², Seong Hwan Kim³

Department of Orthopedic Surgery,

¹Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine ²Jounachim Hospital

³Chung-Ang University Hospital, Chung-Ang University College of Medicine

Disclosure

Yong-Beom Park

Consultant, Robot for Knee Arthroplasty, Curexo Inc.

Consultant, Cartilage Regeneration using ADSVF, Roket Health Care Inc.

Total Knee Arthroplasty: Satisfaction

Established & highly effective for end-stage OA

✓5~20% of patients : dissatisfaction

Predicting dissatisfaction following total knee replacement A PROSPECTIVE STUDY OF 1217 PATIENTS

Patient satisfaction at one year by age

Several Robotics for TKA

Improving clinical outcome through accurate bone cutting & implant position

Active Robotic System

Newly advanced active robotic system for TKA

Purpose

 to determine the accuracy of bone cuts in terms of thickness and alignment using this newly advanced active robotic system for TKA

Methods

- Six cadaveric knees
- TKA using active robotic system (CUVIS-Joint[®], Curexo inc.)

Methods: Measurement of Bone Resection

CAU SITY - 191

Thickness and angle

three planes (distal femoral plane, posterior femoral plane, and tibial plane)

Results

Accuracy of cutting depth

Case No.	Difference between actual cutting and the plan (mm)								
	Femur Distal		Femur I	Posterior	Tibia Proximal				
	Medial	Lateral	Medial	Lateral	Medial	Lateral			
#1	0.2	0.3	-1.3	-1.2	0.5	0.6			
#2	1.2	1.1	-0.7	-0.4	0.3	0.6			
#3	-0.2	-0.1	-1.3	-1.6	0.3	0.8			
#4	0.0	0.1	-0.8	-0.1	0.1	-0.1			
#5	0.6	0.7	-0.8	0.5	0.6	-0.2			
#6	0.0	0.1	-1.1	-0.9	0.2	1.1			
Mean	0.3	0.4	-1.0	-0.6	0.4	0.5			
SD	0.5	0.4	0.4	0.7	0.2	0.5			
RMS	0.5	0.5	1.2	0.9	0.4	0.7			

Abbreviations: SD standard deviation, RMS root mean square, (positive value: under-cutting, negative value: over-cutting)

Results

Accuracy of angle

Case No.	Difference between actual cutting and the plan (degrees)									
	Femur Distal		Femur Posterior		Tibia Proximal		HKA			
	V/V	F/E	I/E	F/E	V/V	F/E	V/V			
#1	0.2	-0.1	-0.5	-0.6	0.1	-0.8	0.2			
#2	-0.1	-0.1	-0.3	-0.1	0.3	0.1	0.2			
#3	0.1	0.3	0.0	-0.4	0.5	0.7	0.6			
#4	0.0	0.0	-0.8	-0.3	-0.3	-0.8	-0.2			
#5	0.0	0.0	-1.3	-0.8	-0.9	-0.2	-0.9			
#6	0.3	-0.1	-0.3	-0.9	1.0	-0.1	1.2			
Mean	0.1	0.0	-0.5	-0.5	0.1	-0.2	0.2			
SD	0.1	0.2	0.4	0.3	0.6	0.5	0.7			
RMS	0.1	0.2	0.7	0.6	0.6	0.6	0.7			

Abbreviations: V/V varus or valgus (positive value: varus, negative value: valgus), F/E flexion or extension (positive value: fle xion, negative value: extension), I/E internal or external (positive value: internal, negative value: external), SD standard devi ation, RMSE root mean square, HKA Hip-Knee-Ankle angle

Conclusion

Robotic TKA with advanced active robotics

High degree of accuracy in resection thickness and alignment

References

- Gunaratne R, Pratt DN, Banda J, Fick DP, Khan RJK, Robertson BW. Patient Dissatisfaction Following Total Knee Arthroplasty: A Systematic Review of the Literature. J Arthroplasty 2017;32(12):3854-3860
- Batailler C, Hannouche D, Benazzo F, Parratte S. Concepts and techniques of a new robotically assisted technique for total knee arthroplasty: the ROSA knee system. Arch Orthop Trauma Surg 2021;141(12):2049-2058
- Kayani B, Konan S, Tahmassebi J, Pietrzak JRT, Haddad FS. Robotic-arm assisted total knee arthroplasty is
 associated with improved early functional recovery and reduced time to hospital discharge compared with
 conventional jig-based total knee arthroplasty: a prospective cohort study. Bone Joint J 2018;100-b(7):930-937
- Casper M, Mitra R, Khare R, et al. Accuracy assessment of a novel image-free handheld robot for Total Knee Arthroplasty in a cadaveric study. Comput Assist Surg (Abingdon) 2018;23(1):14-20
- Hampp EL, Chughtai M, Scholl LY, et al. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques. J Knee Surg 2019;32(3):239-250
- Liow MHL, Chin PL, Pang HN, Tay DK, Yeo SJ. THINK surgical TSolution-One(®) (Robodoc) total knee arthroplasty. Sicot j 2017;3:63
- Stulberg BN, Zadzilka JD, Kreuzer S, et al. Safe and effective use of active robotics for TKA: Early results of a multicenter study. J Orthop 2021;26:119-125
- St Mart JP, Goh EL. The current state of robotics in total knee arthroplasty. EFORT Open Rev 2021;6(4):270-279

Thank you for your attention.