Gender Differences in Prevalence, Outcomes, and Complications of Hip Arthroscopy for Femoroacetabular Impingement: A Systematic Review and Meta-Analysis

Madeline Owen¹ (B.S.), Chetan Gohal² (M.D., FRCSC), Hunter Angileri¹ (B.S.), Matthew Hartwell² (M.D.), Mark Plantz² (M.D.), Michael Terry² (M.D.), Vehniah Tjong² (M.D.)

¹ Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A. ² Division of Orthopaedic Surgery, Northwestern University, Chicago, Illinois, U.S.A.

Northwestern

Disclosures

- ☐ Dr. Michael Terry fellowship support & consulting for Smith & Nephew
- ☐ Dr. Vehniah Tjong consulting for Smith & Nephew

Introduction

□ Trends regarding gender differences have been reported for:

 □ Prevalence
 □ Patient-reported outcomes (PROs)
 □ Complications of hip arthroscopy (HA) for femoroacetabular impingement syndrome (FAIS)

 □ Results are mixed and lack consensus.^{1, 2, 3, 4, 5}
 □ Study purpose:

 1) Compare gender differences in the prevalence of cam and pincer morphology in FAIS
 2) Evaluate for gender differences in PROs, pain scores, and post-operative complication rates after HA for FAIS treatment

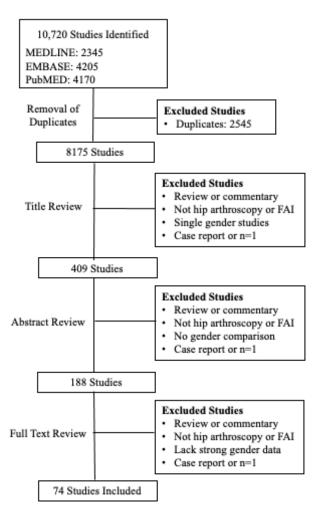
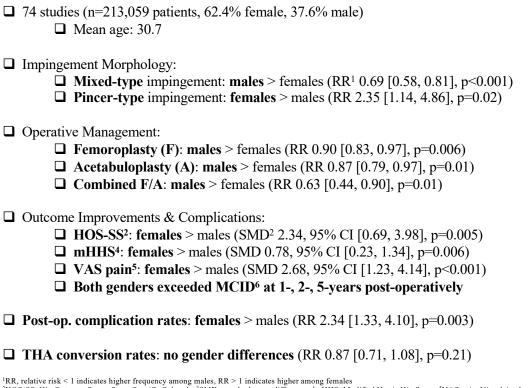



Fig. 1. Flow diagram of systematic screening of the literature for gender differences after HA for FAIS.

Methods

- ☐ Three databases (EMBASE, PubMed, Ovid [MEDLINE]) were searched from database establishment to Nov. 2021;
- ☐ Included: studies with gender-specific data related to prevalence, outcomes, and complications of hip arthroscopy or FAIS;
- ☐ Excluded: reviews and commentaries;
- ☐ Data was combined, between-gender differences analyzed;
- ☐ Meta-analysis using random effects model was performed when possible;
- Pooled risk ratios and standardized mean differences were calculated for male and female data.

Results

¹RR, relative risk < 1 indicates higher frequency among males, RR > 1 indicates higher among females ²HOS-SS, Hip Outcome Score, Sport-Specific Subscale; ³SMD, standard mean difference; ⁴mHHS, Modified Harris Hip Score; ⁵VAS pain, Visual Analogue Scale for pain; ⁶MCID, minimal clinically important difference

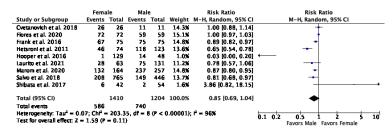


Figure 2: Prevalence of cam hips among FAIS patients.

	Female		Male		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Amenabar et al. 2013	0	1	1	26	4.4%	4.50 [0.26, 78.59]		
Flores et al. 2020	47	86	39	59	13.3%	0.83 [0.63, 1.08]		
Frank et al. 2016	43	75	32	75	13.1%	1.34 [0.97, 1.86]	-	
Hetsroni et al. 2011	47	156	109	123	13.3%	0.34 [0.27, 0.44]	→	
Hooper et al. 2016	6	13	5	48	11.0%	5.91 [2.32, 15.04]		
Laurito et al. 2021	19	25	6	131	11.6%	16.59 [7.37, 37.38]		
Marom et al. 2020	35	116	81	257	13.1%	0.96 [0.69, 1.33]	+	
Shibata et al. 2017	175	277	102	446	13.4%	2.76 [2.28, 3.35]	+	
Yoo et al. 2018	11	12	1	54	6.9%	49.50 [7.05, 347.65]		
Total (95% CI)		761		1219	100.0%	2.35 [1.14, 4.86]	•	
Total events	385		376					
Heterogeneity: Tau2 = 1	.02: Chr	= 249	.91. df =	8 (P <	0.00001): I ² = 97%	h a	
Test for overall effect: Z				-,, -			0.01 0.1 1 10 10 Favors Male Favors Female	

Figure 3: Prevalence of pincer hips among FAIS patients.

	Female		Male		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95% CI	
Joseph et al. 2015	51	156	29	73	15.2%	0.82 [0.57, 1.18]			
Laurito et al. 2021	26	63	76	131	17.3X	0.71 [0.51, 0.99]			
Marom et al. 2020	20	164	55	257	10.1%	0.57 [0.36, 0.91]			
Poehling-Monaghan et al. 2017	12	24	11	23	7.1%	1.05 [0.58, 1.88]			
Salvo et al. 2018	202	765	167	446	33.9%	0.71 [0.60, 0.83]			
Shibata et al. 2017	19	42	50	54	16.4%	0.49 [0.35, 0.69]			
Total (95% CI)		1214		984	100.0%	0.69 [0.58, 0.81]		•	
Total events	330		388					-	
Heterogenetty: Tau2 = 0.01; Chr3	= 7.51,	df = 5	(P = 0.1)	9); P =	33%		0.2	0.5 1 2	_
Test for overall effect: Z = 4.43 (0.2	Favors Male Favors Female	,						

Figure 4: Prevalence of mixed cam/pincer hips among FAIS patients.

Conclusions

□ Males

 □ Higher prevalence of mixed-type FAIS

 □ Females

 □ Higher prevalence of pincer-type FAIS
 □ Greater improvements in PROs after undergoing HA for FAIS
 □ Higher post-operative complication rates for females after HA

 □ Both genders exceeded MCIDs
 □ Significant improvements in PROs suggest that males and females can benefit from HA for FAIS

References

- 1. Salvo JP, Nho SJ, Wolff AB, et al. Sex-Dependent Differences in Preoperative, Radiographic, and Intraoperative Characteristics of Patients Undergoing Hip Arthroscopy: Results From the Multicenter Arthroscopic Study of the Hip Group. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2018;34(3):844-852. doi:10.1016/j.arthro.2017.09.044
- 2. Beck EC, Drager J, Nwachukwu BU, Jan K, Rasio J, Nho SJ. Gender and Age-Specific Differences Observed in Rates of Achieving Meaningful Clinical Outcomes 5-Years After Hip Arthroscopy for Femoroacetabular Impingement Syndrome. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2021;37(8):2488-2496.e1. doi:10.1016/j.arthro.2021.02.033
- 3. Cvetanovich GL, Weber AE, Kuhns BD, et al. Clinically Meaningful Improvements After Hip Arthroscopy for Femoroacetabular Impingement in Adolescent and Young Adult Patients Regardless of Gender. J Pediatr Orthop. 2018;38(9):465-470. doi:10.1097/BPO.00000000000000052
- 4. Bonazza NA, Homcha B, Liu G, Leslie DL, Dhawan A. Surgical Trends in Arthroscopic Hip Surgery Using a Large National Database. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2018;34(6):1825-1830. doi:10.1016/j.arthro.2018.01.022
- 5. Montgomery SR, Ngo SS, Hobson T, et al. Trends and demographics in hip arthroscopy in the United States. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2013;29(4):661-665. doi:10.1016/j.arthro.2012.11.005

6