# Peri-Operative Complications, Safety, and Early Outcomes of a Novel ACL & ALL Reconstruction Technique Using IT Band vs. Patellar Tendon ACLR:

ISAKOS 2023 Boston, MA A Retrospective Pilot Study of the SATURN (Skeletally-Mature ACLR Technique Using Reinforcement)
Study Group

Boston Children's Hospital (BCH): Ben Heyworth MD, Yi-Meng Yen MD, Dennis Kramer MD, Mininder S. Kocher MD-MPH

Rady Children's Hospital (RCH): Andrew Pennock MD

Texas Scottish Rite Children's Hospital (TSRH): Henry Ellis MD, Phillip Wilson MD

Hospital for Special Surgery (HSS): Peter Fabricant MD

Campbell Clinic: David Spence, MD

Children's Heathcare of Atlanta (CHOA): Cliff Willimon MD, Crystal Perkins MD

U. Pittsburgh Medical Center (UPMC): Michael McClincy MD

Case Western Reserve University Hospital, Rainbow Children's Hospital: James Voos MD

U. Kentucky Medical Center (RCH): Benjamin Wilson MD

Washington University Hospital: Jeffrey Nepple MD





















## **Disclosures**

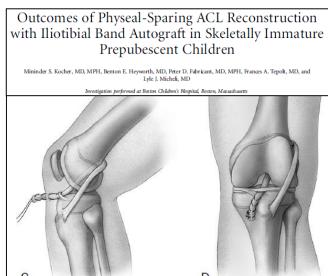
Dr. Heyworth is a paid consultant for Arthrex, Inc. and Kairos Surgical.

Dr. Heyworth owns stock or stock options in Imagen Technologies, Inc.

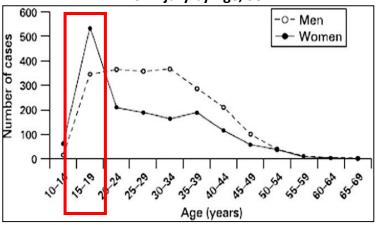
Dr. Heyworth is a member of the ROCK Study Group, which receives research or institutional support from Allosource, Inc. and Vericel, Inc.

Dr. Heyworth receives textbook royalties from Springer Science and Business Media.

# **SATURN Study Group: 15 Surgeons, 10 Centers**




## **Background**


- Outcomes of ACL Reconstruction (ACLR) in skeletally immature patients are being studied by the PLUTO group.
- The Modified Macintosh ACLR with IT Band autograft, developed by Dr. Lyle Micheli, has shown favorable results in prepubescent children
- Older adolescents with closing or closed physes are the most affected age group with the highest retear rates.
- Therefore, longstanding interest in application of the Micheli technique for older adolescents has led to modifications of the technique for this age group.





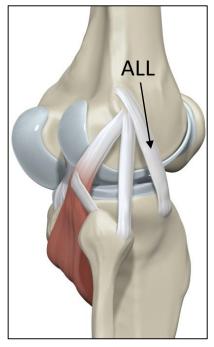


ACL Injury by Age, Sex



Renstrom P, Ljungqvist A, Arendt E, et al. Non-contact ACL injuries in female athletes:an International Olympic Committee current concepts statement. Br J Sports Med. 2008;42(6):394–412.

## **Background**


• Similar to a technique described by the SANTI group, the SATURN technique utilizes a complete femoral tunnel from the ACL footprint (inside the notch) to the ALL footprint (just proximal/posterior to the lateral epicondyle).

 An RCT study investigating a similar technique in adults found no differences in re-rupture rates between ITB and BTB at 15-year follow-up.

Iliotibial band autograft versus bone-patella-tendon-bone autograft, a possible alternative for ACL reconstruction: a 15-year prospective randomized controlled trial

Frederik Stensbirk · Kristian Thorborg · Lars Konradsen · Uffe Jørgensen · Per Hölmich

Knee Surg Sports Traumatol Arthrosc (2014) 22:2094–2101 DOI 10.1007/s00167-013-2630-9







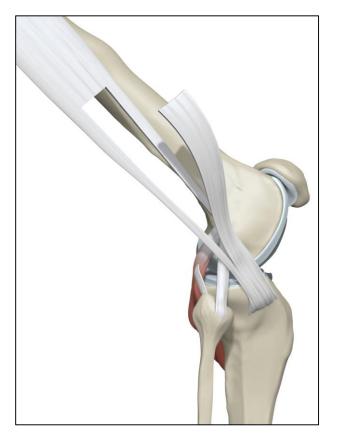
#### Conclusion

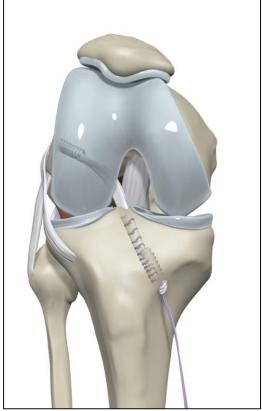
Using a randomized clinical trial design, we found no differences in re-rupture rates between ITB and BPTB reconstructed patients at 15-year follow-up. Thus, it seems that the ITB reconstruction can be recommended as an attractive and realistic alternative to the conventional methods, and could also be considered in relation to revision ligament surgery and multi-ligament reconstruction where additional graft material is needed.

## **Purpose**

To investigate, in comparative fashion, the peri-operative safety, post-operative complications, and 2-Yr Functional/Patient-Reported Outcomes (PROs) of ITB-ACLR+ALLR vs. BTB-ACLR in a large demographically and geographically diverse adolescent population.

## **Methods**


### BTB Either


- Suspensory fixation on femur
- Aperture fixation on femur





# SATURN ITB (Modified-Micheli) Femoral tunnel-based (outside in) graft passage





## Methods – Data Collection, Forms

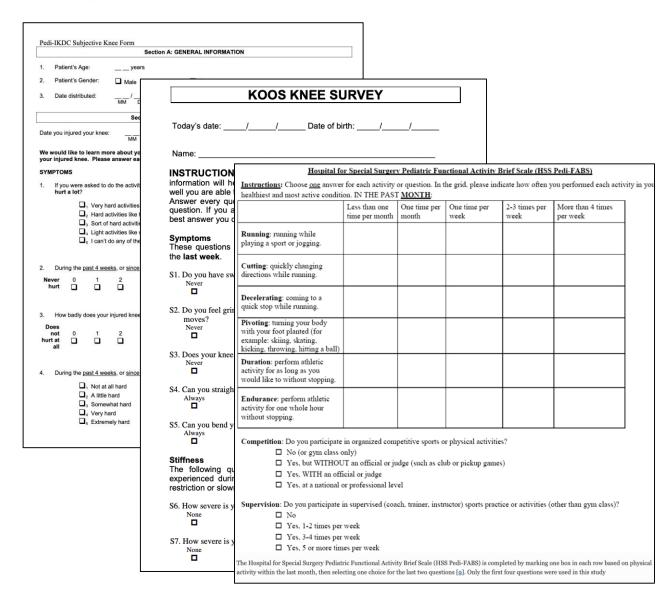
#### **Demographic Data**

Athletic status, activity

#### **Injury Data**

- Injury activity (Sports vs. recreational play vs. other)
- MOI (contact vs. non-contact)

#### Radiographic Measurements (AP, lateral XR; MRI)


- Posterior slope
- Notch width

#### **Primary Outcome Measures (Validated PROs)**

Pedi-IKDC, KOOS, HSS Pedi-FABS

#### **Secondary Outcome Measures**

- Pain, QOL (EQ5D)
- Satisfaction
- Complications
  - Arthrofibrosis
  - Re-tear
  - Meniscus tear



## Results – Demographic, Surgical Variables

| Table 1: Pre-Operative/Baseline Demographic & Peri-Operative/Early* Post-Operative Complications |                        |                     |         |  |  |  |
|--------------------------------------------------------------------------------------------------|------------------------|---------------------|---------|--|--|--|
|                                                                                                  | ITB-ACLR+ALLR (n = 37) | BTB-ACLR $(n = 42)$ | p-value |  |  |  |
| Age (years; mean)                                                                                | 16.6 (+/- 3.0)         | 17.4 (+/- 2.0)      | 0.19    |  |  |  |
| Sex                                                                                              |                        |                     | 0.85    |  |  |  |
| Male                                                                                             | 15 (41%)               | 19 (45%)            |         |  |  |  |
| Female                                                                                           | 22 (59%)               | 23 (55%)            |         |  |  |  |
| BMI                                                                                              | 24.3 (+/- 6.2)         | 24.5 (+/- 5.5)      | 0.89    |  |  |  |
| Tunnel diameter                                                                                  |                        |                     |         |  |  |  |
| Femoral (mm; mean)                                                                               | 7.0 (+/- 0.2)          | 9.7 (+/- 0.7)       | < 0.001 |  |  |  |
| Tibial (mm; mean)                                                                                | 7.0 (+/- 0.2)          | 9.8 (+/- 0.6)       | < 0.001 |  |  |  |
| Operative time (minutes; mean)                                                                   | 135.5 (+/- 27.9)       | 147.9 (+/- 33.3)    | 0.14    |  |  |  |
| Tourniquet time (minutes; mean)                                                                  | 113.6 (+/- 16.4)       | 119.1 (+/- 12.4)    | 0.19    |  |  |  |
| RTS (months; mean)                                                                               | 9.2 (+/- 1.6)          | 9.4 (+/- 1.4)       | 0.45    |  |  |  |

No significant differences in age, sex, BMI, PROs, operative time, tourniquet time, or RTS time between the two treatment groups.

The tunnel diameter in the ITB-ACLR group is significantly smaller compared to the BTB-ACLR group.

# **Results – Complications**

| Table 1: Pre-Operative/Baseline Demographic & Peri-Operative/Early* Post-Operative Complications |                          |                     |         |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|--------------------------|---------------------|---------|--|--|--|--|--|
|                                                                                                  | ITB-ACLR+ALLR $(n = 37)$ | BTB-ACLR $(n = 42)$ | p-value |  |  |  |  |  |
| Graft Rupture/ACL Re-Tear                                                                        | 2 (5.4%)                 |                     |         |  |  |  |  |  |
| Meniscus Tear                                                                                    | 2 (5.4%)                 | 1 (2.4%)            |         |  |  |  |  |  |
| Arthrofibrosis                                                                                   | 1 (2.7%)                 | 6 (14.3%)           |         |  |  |  |  |  |
| Patellar Tendonitis                                                                              |                          | 1 (2.4%)            |         |  |  |  |  |  |
| Superficial Infection                                                                            | 1 (2.7%)                 |                     |         |  |  |  |  |  |
| Quad Neuropraxia a/w Patellar<br>Tendonitis                                                      |                          | 2 (4.8%)            |         |  |  |  |  |  |
| Tibial Biocomposite Screw,<br>Foreign Body Reaction                                              | 1 (2.7%)                 |                     |         |  |  |  |  |  |
| Contralateral ACL Tear                                                                           | 1 (2.7%)                 | 1 (2.4%)            |         |  |  |  |  |  |
| Additional (Ipsilateral) Surgeries                                                               | 5 (13.5%)                | 7 (16.7%)           |         |  |  |  |  |  |

2 graft ruptures in the ITB-ACLR group (one grossly noncompliant patient), none in BTB-ACLR group.

6 cases of Arthrofibrosis warranting intervention in the BTB group.

2 cases of clinically significant Quad Neuropraxia a/w Patellar Tendonitis affecting early rehab in BTB-ACLR group. Overall, complications are similar between the two groups.

# Results – Patient Reported Outcomes (PROs)

| Table 2: Patient Reported Outcome Questionnaires (PROs) |               |          |               |    |          |               |         |  |  |  |
|---------------------------------------------------------|---------------|----------|---------------|----|----------|---------------|---------|--|--|--|
|                                                         | IT            | B-ACLR+A | LLR (n = 37)  |    | BTB-ACLI | R (n = 42)    | p-value |  |  |  |
| 6 month PRO follow-up time (months; mean)               | 6.7 (+/- 1.0) |          | 6.4 (+/- 1.1) |    |          | 0.18          |         |  |  |  |
| PRO                                                     | n             | Median   | (IQR)         | n  | Median   | (IQR)         | p-value |  |  |  |
| Pedi-IKDC                                               |               |          |               |    |          |               |         |  |  |  |
| Baseline                                                | 33            | 60.9     | (45 - 73)     | 30 | 53.8     | (43 - 67)     | 0.29    |  |  |  |
| 6 Months                                                | 23            | 87.0     | (81 - 94)     | 28 | 80.4     | (74 - 87)     | 0.02    |  |  |  |
| HSS Pedi-FABS                                           |               |          |               |    |          |               |         |  |  |  |
| Baseline                                                | 33            | 11.0     | (5-27)        | 28 | 6.5      | (5-27)        | 0.98    |  |  |  |
| 6 Months                                                | 22            | 14.5     | (9 - 18)      | 25 | 12.0     | (8 - 19)      | 0.59    |  |  |  |
| KOOS-Pain                                               |               |          |               |    |          |               |         |  |  |  |
| Baseline                                                | 33            | 83.3     | (72 - 89)     | 29 | 80.6     | (69 - 89)     | 0.45    |  |  |  |
| 6 Months                                                | 22            | 97.2     | (92 - 100)    | 26 | 94.44    | (86 - 97)     | 0.06    |  |  |  |
| KOOS-Symptoms                                           |               |          |               |    |          |               |         |  |  |  |
| Baseline                                                | 33            | 75.0     | (61 - 82)     | 30 | 70.7     | (54 - 82)     | 0.53    |  |  |  |
| 6 Months                                                | 22            | 92.9     | (87 - 93)     | 25 | 85.7     | (79 - 95)     | 0.09    |  |  |  |
| KOOS-Function, daily living                             |               |          |               |    |          |               |         |  |  |  |
| Baseline                                                | 33            | 92.7     | (82 - 99)     | 29 | 86.8     | (81 - 96)     | 0.50    |  |  |  |
| 6 Months                                                | 22            | 100      | (99 - 100)    | 27 | 100      | (98 - 100)    | 0.39    |  |  |  |
| KOOS-Sport/Rec                                          |               |          |               |    |          |               |         |  |  |  |
| Baseline                                                | 33            | 50.0     | (30 - 85)     | 24 | 35.0     | (25 - 53)     | 0.17    |  |  |  |
| 6 Months                                                | 22            | 87.5     | (76 - 95)     | 26 | 81.7     | (65 - 90)     | 0.06    |  |  |  |
| KOOS-Quality of Life                                    |               |          |               |    |          |               |         |  |  |  |
| Baseline                                                | 33            | 43.8     | (25 - 50)     | 28 | 31.3     | (17 - 44)     | 0.12    |  |  |  |
| 6 Months                                                | 22            | 68.8     | (56 - 80)     | 27 | 62.5     | (44 - 68)     | 0.10    |  |  |  |
| EQ5D-5L                                                 |               |          |               |    |          |               |         |  |  |  |
| Baseline                                                | 30            | 0.86     | (0.75 - 0.94) | 25 | 0.72     | (0.62 - 0.94) | 0.20    |  |  |  |
| 6 Months                                                | 21            | 0.94     | (0.94 - 1.00) | 24 | 1.00     | (0.88 - 1.00) | 0.91    |  |  |  |
| EQVAS                                                   |               |          | ,             |    |          | ,             |         |  |  |  |
| Baseline                                                | 30            | 90.0     | (76 - 95)     | 24 | 85.0     | (70 - 91)     | 0.33    |  |  |  |
| 6 Months                                                | 21            | 92.0     | (85 - 95)     | 24 | 85.0     | (80 - 90)     | 0.39    |  |  |  |
|                                                         |               |          | (55 55)       |    |          | (55 55)       | -       |  |  |  |

6 month PROs showed statistically significant superior Pedi-IKDC results in ITB group compared to BTB.

There were similar activity levels in both groups.

Not statistically significant superior KOOS Pain, Symptoms, and Sports scores in the ITB-ACLR group, although approached it.

All other baseline and 6 month scores were similar.

### **Conclusions**

Preliminary safety and early outcomes data suggests that a novel ACLR+ALLR technique may be:

- Safe, effective in restoring stability, allowing for return to sport
- Comparable, or possibly superior, to BTB-ACLR, in <u>early</u> PROs
- Comparable, in terms of overall complications

Given the potential advantages of the technique (preservation of flexor/extensor muscle groups, technically simple, small tunnels = revision-friendly), continued monitoring, comparative analysis is warranted

- ACL re-tear/graft ruptures particular attention/monitoring
  - Early cases reported (between 9-15 months)
  - Monitoring over a longer post-operative period, in a larger cohort, performed by a larger number of surgeons.

## References

- Kocher MS, Heyworth BE, Fabricant PD, Tepolt FA, Micheli LJ. Outcomes of Physeal-Sparing ACL Reconstruction with Iliotibial Band Autograft in Skeletally Immature Prepubescent Children. J Bone Joint Surg Am. 2018;100(13):1087-1094. doi:10.2106/JBJS.17.01327
- Renstrom P, Ljungqvist A, Arendt E, et al. Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. *Br J Sports Med*. 2008;42(6):394-412. doi:10.1136/bjsm.2008.048934
- Stensbirk F, Thorborg K, Konradsen L, Jørgensen U, Hölmich P. Iliotibial band autograft versus bone-patella-tendon-bone autograft, a possible alternative for ACL reconstruction: a 15-year prospective randomized controlled trial. *Knee Surg Sports Traumatol Arthrosc.* 2014;22(9):2094-2101. doi:10.1007/s00167-013-2630-9
- Saithna A, Thaunat M, Delaloye JR, Ouanezar H, Fayard JM, Sonnery-Cottet B. Combined ACL and Anterolateral Ligament Reconstruction. *JBJS Essent Surg Tech*. 2018;8(1):e2. Published 2018 Jan 10. doi:10.2106/JBJS.ST.17.00045
- Stordeur A, Grange S, Servien E, et al. Optimal Combination of Femoral Tunnel
  Orientation in Anterior Cruciate Ligament Reconstruction Using an Inside-out Femoral
  Technique Combined With an Anterolateral Extra-articular Reconstruction. Am J Sports
  Med. 2022;50(5):1205-1214. doi:10.1177/03635465221078326