

Severance

Particulated Costal Allocartilage with Microfracture Versus Microfracture Alone: a Multicenter, Prospective, Randomized, Participant- and Rater-blinded Study

<u>Kwangho Chung, MD.¹</u>, Min Jung, MD. PhD.², Sanghoon Park, MD.³, Ki-mo Jang, MD. PhD.⁴, Chong-Hyuk Choi, MD. PhD.², Jun-Woo Byun, MD.², Ji-Hwan Min, MD.², Chang-Min Lee, MD.², Se-Han Jung, MD.⁵, Sung-hwan Kim, MD. PhD⁵

¹Yongin Severance Hospital, Yonsei University College of Medicine ²Severance Hospital, Yonsei University College of Medicine ³National Health Insurance Service IIsan Hospital ⁴Korea University Anam Hospital, Korea University College of Medicine ⁵Gangnam Severance Hospital, Yonsei University College of Medicine

Disclosures

- This work was supported by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: 1711138451, KMDF_PR_20200901_0217).
- L& C Bio also provided the funding for this study by supporting a research grant, study protocol, and material (particulated costal allocartilage).

• The authors declared **no other conflicts of interest** with respect to the research, authorship, and/or publication of this article.

Introduction

• Decellularized hyaline cartilage

- Potentially an **ideal scaffold** for cartilage regeneration
- Resembles mechanical, biochemical, and structural properties of the native hyaline cartilage.
- Costal hyaline cartilage could be another emerging source of hyaline cartilage scaffold

• Necessity of the study

- Only a few recent observational studies reported favorable outcomes after microfracture with decellularized hyaline cartilage
- Paucity of high-quality randomized controlled clinical study
- No previously published work presenting the result of the microfracture augmented with costal cartilage
- The purpose of the study
 - Compare the clinical efficacy and safety between particulated costal allocartilage with microfracture and microfracture alone in treating knee cartilage defects.

Hypothesis & Study design

• We hypothesized that

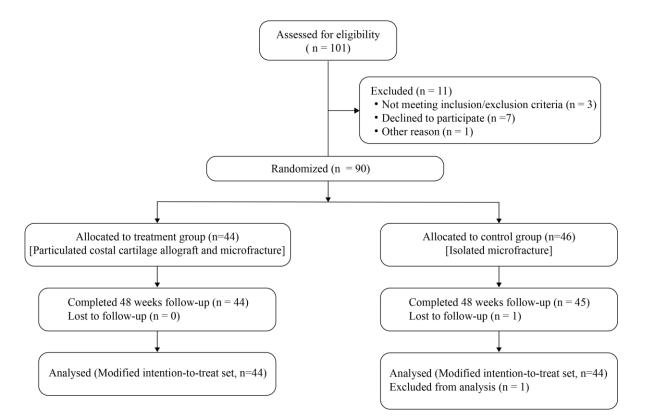
- Combination of particulated costal allocartilage with microfracture would result in superior cartilage repair quality and better clinical outcomes compared to microfracture alone at 48 weeks post-operation for knee cartilage defects.
- Multi-center, prospective, randomized, and participant- and rater-blinded trial
- Conducted in four hospitals

Inclusion/Exclusion

Inclusion criteria

- 19 65 year of age
- Focal cartilage defects of less than 10cm² in size
- ICRS grade III or IV

Exclusion criteria


- Cartilage surgery in the past 1 year
- BMI of 30 kg/m² or more
- Inflammatory arthritis
- Arthritis associated with autoimmune diseases
- Intra-articular injection in the past 3 months
- Systemic steroid medication in the past 1 month
- Pregnancy
- Systemic or localized infection.

Study design

Consort flow diagram

Outcome Measures

- MOCART score (MRI)
- Patient-reported clinical outcomes:

VAS pain score IKDC subjective score KOOS

Safety

Operative procedures

• Microfracture

• In either treatment and control group

- Augmented with Particulated costal allocartilage (Megacarti[®]) in treatment group
 - A size of 200 to 1000 μ m and a weight of 1.5 g was prepared in a 3 cc prefilled syringe
 - Viscous paste type by adding a sodium hyaluronate cross-linked with sodium carboxymethyl cellulose
- In case of varus malalignment of the affected lower extremity,
 - High tibial open wedge osteotomy (HTO) was additionally performed in either treatment and control group.

Result – Baseline characteristics

Variable	Treatment group (n = 44)	Control group (n = 44)	P Value	Variable	Treatment group (n = 44)	Control group (n = 44)	P Value
Age, years	55.2 ± 9.2	53.2 ± 7.7	.109	Affected Side			.831
50 or less	43.8 ± 9.0	43.6 ± 5.4	.475	Right	23 (52.3)	22 (50.0)	
More than 50	59.4 ± 4.4	57.3 ± 4.2	<mark>.031</mark>	Left	21 (47.7)	22 (50.0)	
50 or less	12 (27.3)	13 (295.5)	.813	Size of the defect, cm ²	4.3 ± 2.6	4.0 ± 2.2	.688
More than 50	32 (72.7)	31 (70.5)		4 or less	2.2 ± 1.1	2.1 ± 1.1	.947
Sex			.496	More than 4	5.3 ± 1.3	5.9 ± 1.6	.355
Male	13 (29.6)	16 (36.4)		4 or less	31 (70.5)	29 (65.9)	.647
Female	31 (70.5)	28 (63.6)		More than 4	13 (29.5)	15 (34.1)	
Height, cm	160.4 ± 7.9	164.1 ± 9.4	.063	ICRS grade			.830
Weight, kg	65.2 ± 9.6	69.0 ± 10.9	.081	Grade III	24 (54.5)	25 (56.8)	
Body mass index, kg/m ²	25.3 ± 2.7	25.6 ± 2.8	.623	Grade IV	20 (45.5)	19 (43.2)	
Current smoker			.110	Previous HTO	2 (4.6)	0	.494
Yes	1 (2.3)	6 (13.6)		Concurrent HTO			.669
No	43 (97.7)	38 (86.4)		Yes	19 (43.2)	21 (47.7)	
Previous surgical history			.787	No	25 (56.8)	23 (52.3)	
Yes	9 (20.5)	8 (18.2)		Approach			.269
No	35 (79.5)	36 (81.8)		Mini-arthrotomy	11 (25.0)	6 (13.6)	
				Arthroscopy	33 (75.0)	38 (86.4)	

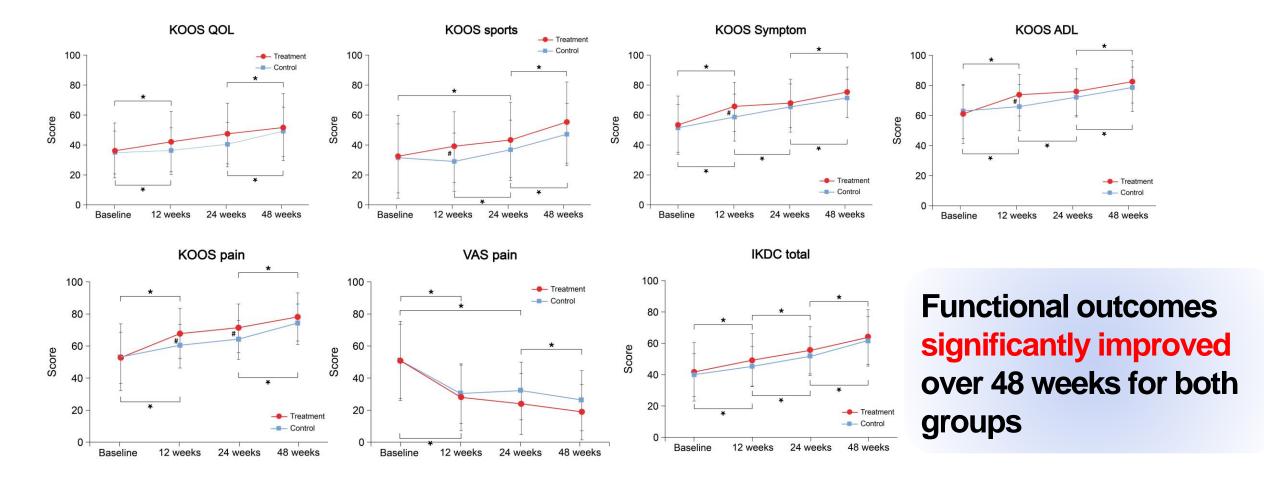
Result – MRI outcomes at 48 weeks

Variables	Treatment group (n = 44)	Control group (n = 44)	p-value
Total score	56.0 ± 10.5	43.0 ± 17.4	<mark>< .001</mark>
1. Degree of defect repair and filling of the defect score	13.5 ± 2.8	10.3 ± 5.0	<mark>.004</mark>
20: Complete (on a level with adjacent cartilage)	6 (6.8)	3 (3.4)	<mark>< .001</mark>
15: Hypertrophy (over the level of the adjacent cartilage)	57 (64.8)	37 (42.1)	
10: >50% of the adjacent cartilage	18 (20.5)	16 (18.2)	
5: <50% of the adjacent cartilage	7 (8.0)	27 (30.7)	
0: Subchondral bone exposed (Complete delamination of dislocation and/or loose body)	0 (0)	5 (5.7)	
2. Integration to border zone score	11.5 ± 3.7	8.4 ± 4.8	<mark>.001</mark>
15: Complete (Complete integration with adjacent cartilage	52 (59.1)	27 (30.7)	<mark>< .001</mark>
10: Demarcating border visible (split-like)	13 (14.8)	22 (25.0)	
5: <50% of the length of the repair tissue	21 (23.9)	22 (25.0)	
0: >50% of the length of the repair tissue	2 (2.3)	17 (19.3)	
3. <mark>Surface</mark> of the repair tissue	5.3±2.4	3.8±2.4	<mark>.005</mark>
10: Surface intact (lamina splendens intact)	20 (22.7)	8 (9.1)	.006
5: <50% of repair tissue depth	53 (60.2)	50 (56.8)	
0: >50% of repair tissue depth of total degeneration	15 (17.1)	30 (34.1)	
4. Structure of the repair tissue	2.2 ± 1.5	1.3 ± 1.7	<mark>.004</mark>
5: Homogeneous	38 (43.2)	22 (25.02)	<mark>.011</mark>
0: Inhomogeneous or cleft formation	50 (56.8)	66 (75.0)	
5. Signal intensity of the repair tissue	4.8 ± 1.1	3.9 ± 2.1	.011
15: Normal (identical to adjacent cartilage)	1 (1.1)	1 (1.1)	<mark>< .001</mark>
5: Nearly normal (slightly area or signal alteration)	82 (93.2)	65 (73.9)	
0: Abnormal (large area of signal alteration)	5 (5.7)	22 (25.0)	
6. Subchondral lamina	4.0 ± 1.6	3.0 ± 2.0	<mark>.017</mark>
5: Intact	70 (80.0)	53 (60.2)	<mark>.005</mark>
0: Not intact	18 (20.5)	35 (40.0)	
7. Subchondral bone	2.2 ± 1.8	1.6 ± 1.8	.095
5: Intact	39 (44.3)	28 (31.8)	.088
0: Edema, granulation tissue, cysts, sclerosis	49 (55.7)	60 (68.2)	
8. Adhesions	5.0±0.0	4.8±0.7	<mark>.043</mark>
5: No	88 (100.0)	84 (95.5)	.121
0: Yes	0 (0)	4 (4.6)	
9. Effusion	2.6 ± 2.3	2.2 ± 2.1	.346
5: No effusion	46 (52.3)	38 (43.2)	.227
0: Effusion	42 (47.7)	50 (56.8)	

Costal cartilage augmentation showed significantly greater total MOCART scores at 48 weeks (P < .001).

Among 9 variables, 7 variables were significantly different between the groups at 48 weeks.

Result – MRI outcomes of subgroup at 48 weeks


Variable	Treatment group	Control group	P Value				
Age, years							
50 or less	61.7 ± 8.8	53.7 ± 9.7	.076				
More than 50	53.8 ± 10.4	38.5 ± 18.0	<mark>< .001</mark>				
Size of the defect, cm ²							
4 or less	58.5 ± 9.8	48.4 ± 16.1	<mark>.015</mark>				
More than 4	50.0 ± 9.8	32.5 ± 15.3	<mark>.002</mark>				
ICRS grade							
Grade III	58.0 ± 9.7	47.5 ± 17.3	<mark>.038</mark>				
Grade IV	53.5 ± 11.0	37.0 ± 16.0	<mark>< .001</mark>				
Concurrent HTO							
Yes	52.9 ± 9.5	35.7 ± 16.3	<mark>< .001</mark>				
No	58.3 ± 10.8	49.6 ± 15.9	.075				

Costal cartilage augmentation showed significantly superior quality regardless of stratification according to size $(\leq 4 \text{cm}^2, \text{P} = .015; > 4 \text{cm}^2, \text{P} = .002)$ and ICRS grade (grade III, P = .038; grade IV, P < .001) of the cartilage defects.

Result – Patient-reported functional outcomes

Result – Patient-reported functional outcomes and safety outomes

	At preop			At 12 weeks			At 24 weeks			At 48 weeks		
Variable	Treatment group (n = 44)	Control group (n = 44)	P Value	Treatment group (n = 44)	Control group (n = 44)	P Value	Treatment group (n = 44)	Control group (n = 44)	P Value	Treatment group (n = 44)	Control group (n = 44)	P Value
IKDC	41.8±18.6	39.7±13.6	0.532	49.4±16.9	45.1±12.6	.181	55.6±15.0	51.7±12.5	.192	64.0±17.5	61.1±15.7	.356
VAS pain	51.0±24.7	50.9±23.2	0.812	28.3±20.9	30.4±18.2	.516	24.1±19.1	32.3±18.2	<mark>.012</mark>	19.1±17.2	26.2±18.9	.056
KOOS												
Sports	32.3±27.6	31.4±23.0	0.831	38.9±23.5	28.6±19.5	<mark>.029</mark>	43.4±24.8	36.6±20.1	.156	55.1±27.0	46.8±20.7	.052
Symptom	53.1±19.5	51.0±15.9	0.577	65.5±16.5	58.3±15.9	<mark>.039</mark>	67.7±16.3	64.7±16.0	.386	75.1±16.9	71.0±13.0	.202
Pain	54.4±21.5	54.2±16.5	0.964	69.6±16.1	61.6±13.9	<mark>.014</mark>	72.9±15.5	65.5±12.5	<mark>.005</mark>	80.1±15.4	75.6±13.0	.072
ADL	61.4±19.9	62.4±17.8	0.803	73.7±13.9	65.5±15.4	<mark>.010</mark>	75.9±15.7	71.9±12.6	.077	82.6±14.1	78.3±14.3	.085
QOL	36.1±18.3	35.0±14.2	0.913	42.2±20.0	36.0±15.6	.256	47.6±20.3	40.2±14.9	.055	51.9±22.4	48.9±16.4	.543

Better some of the outcomes at 12 and 24 weeks.

Comparable outcomes at 48 weeks.

No operation-related adverse event.

Conclusion

• Particulated costal allocartilage with microfracture

- Is a safe and efficacious surgical procedure for treating a cartilage defect of the knee joint.
- Resulted in superior cartilage repair quality in terms of MRI evaluation than microfracture alone at 48 weeks follow-up
- The **functional outcomes were favorable** for both treatments and **comparable** between the treatments at 48 weeks follow-up

References

- 1. Kang H, Peng J, Lu S, et al. In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage E CM scaffolds. J Tissue Eng Regen Med. 2014;8:442-453
- Yang Q, Peng J, Guo Q, et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissu e engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials. 2008; 29:2378-2387.
- 3. Yin H, Wang Y, Sun Z, et al. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage e microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Bio mater. 2016;33:96-109.
- 4. Erten E, Sezgin Arslan T, Derkus B, Arslan YE. Detergent-free decellularization of bovine costal cartilage for chondro genic differentiation of human adipose mesenchymal stem cells in vitro. RSC Advances. 2016;6:94236-94246.
- Setayeshmehr M, Esfandiari E, Hashemibeni B, et al. Chondrogenesis of human adipose-derived mesenchymal stro mal cells on the [devitalized costal cartilage matrix/poly(vinyl alcohol)/fibrin] hybrid scaffolds. European Polymer Jour nal. 2019;118:528-541.
- 6. Carter AH, Guttierez N, Subhawong TK, et al. MR imaging of BioCartilage augmented microfracture surgery utilizing 2D MOCART and KOOS scores. J Clin Orthop Trauma. 2018;9:146-152.
- 7. Cole BJ, Haunschild ED, Carter T, Meyer J, Fortier LA, Gilat R. Clinically Significant Outcomes Following the Treatm ent of Focal Cartilage Defects of the Knee With Microfracture Augmentation Using Cartilage Allograft Extracellular M atrix: A Multicenter Prospective Study. Arthrscopy. 2021;37:1512-1521.