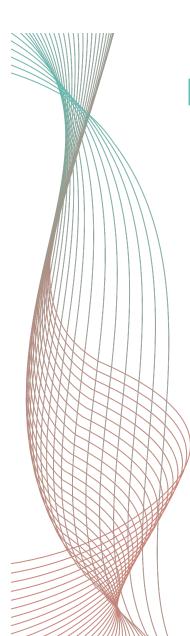


Muscle Edema of Retraction & Pseudo Fatty Infiltration After Traumatic Rotator Cuff Tears:

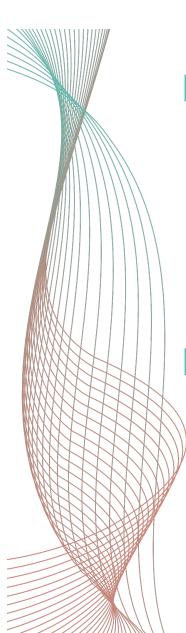
An Experimental Model in Sheep

T. Martinho, S. Wang, A. Lädermann, J. Chiu, M. Nabergoj, S.W.L. Ho, B. von Rechenberg, H. Bothorel, L. Lädermann, F. Kolo



DISCLOSURES

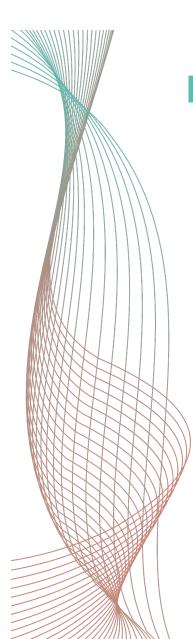
- T. Martinho, S. Wang, A. Lädermann, J. Chiu, M. Nabergoj, S.W.L. Ho, B. von Rechenberg, H. Bothorel and F. Kolo have nothing to disclose.
- Alexandre L\u00e4dermann has received consulting fees from Arthrex, Medacta, and Stryker and is the founder of FORE, BeeMed, and Med4Cast.



BACKGROUND

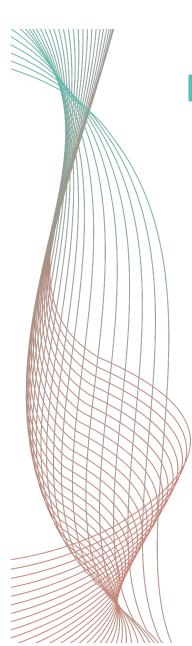
- Traumatic rotator cuff tears may be associated with muscle edema¹⁻⁴.
- Muscle edema can mimic fat on magnetic resonance imaging (MRI) → Appearance of "Pseudo-fatty infiltration".
- Paucity of literature on the topic: Development?
 Characteristics? Interpretation? Consequences?
- Better understanding could facilitate treatment strategies.

PURPOSE


 Describe MRI characteristics of <u>edema of retraction</u>, a type of muscle edema associated with acute rotator cuff tendon retraction, in an animal model.

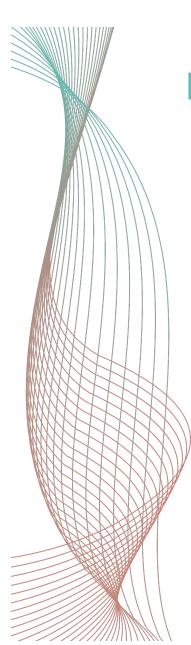
HYPOTHESIS

 Edema of retraction does exist and may be confused with fatty infiltration as seen on MRI.



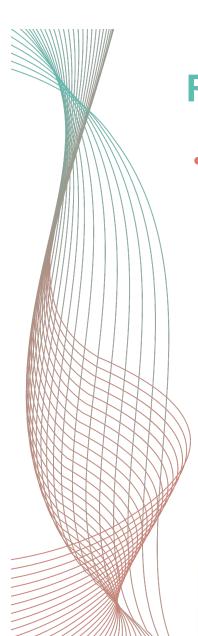
METHODS

- Descriptive laboratory study on 12 alpine sheep.
- One veterinarian performed all procedures.
- Use of an established sheep model⁵⁻⁷:
 - Right Shoulder: Treatment group → Greater tuberosity osteotomy to acutely release of the infraspinatus (ISP) tendon.
 - Left Shoulder: Control group → Baseline muscle intensity.
- Weightbearing as tolerated immediately after surgery.



METHODS

- MRI exams timeline: Right after surgery, 2 & 4 weeks later
- Identical MRI protocol for all cases:
 - 3-T system with dedicated receive-only extremity coil,
 - Slice thickness of 3.5 mm,
 - T1-weighted, T2-weighted, and Dixon pure-fat sequences⁸,
 - Both scapular spines positioned in the imaging plane
 - → transverse sections perpendicular to the glenoid cavity.



METHODS

- One musculoskeletal radiologist reviewed all images.
- Definitions:
 - Muscle edema: ISP T2 hyperintense signal.
 - Fatty Infiltration: Determination of the ISP fat percentage on 2point Dixon sequences according Nozaki⁹.
 - Pseudo–Fatty Infiltration: ISP Hyperintense signal on T1-weighted but not on 2-point Dixon sequences.

RESULTS

- Edema of retraction: Hyperintensity on T1- and T2 weighted but not 2-point Dixon sequences
 - → Pseudo–fatty infiltration resulting from edema formation.

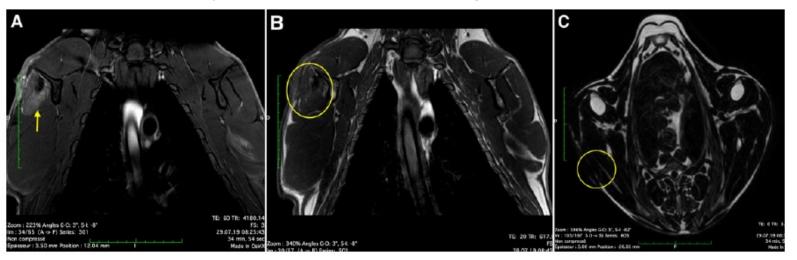
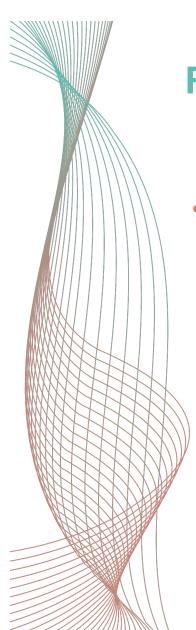



Figure 1. Magnetic resonance imaging (MRI) at 28 days after surgical release of the infraspinatus tendon. (A) T2-weighted fat-saturated MRI in the sagittal view showing edema of the infraspinatus muscle (arrow). (B) Infraspinatus muscle with a blurry aspect and slight hyperintense signal (circle) in the sagittal view of T1-weighted turbo spin echo MRI. (C) In the axial view of 2-point Dixon pure-fat MRI, no fat is visible (circle), suggesting pseudo-fatty infiltration.

RESULTS

- Retraction edema:
 - Peri- or intra-muscular localization,
 - Characteristic "ground glass"
 appearance on T1-weighted sequences.

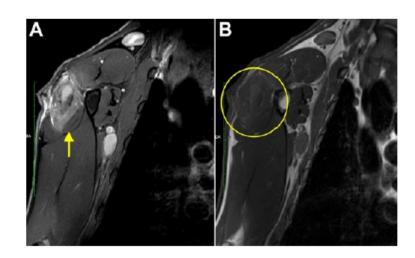
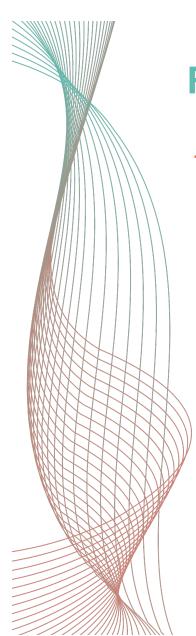



Figure 2. Magnetic resonance imaging (MRI) at 28 days after surgical tendon release. (A) Sagittal view of T2-weighted fat-saturated turbo spin echo MRI showing edema of retraction in the infraspinatus muscle (arrow). (B) Axial view of T1-weighted MRI showing a "ground glass" appearance of the infraspinatus muscle with a blurred aspect and slight hyperintense signal (circle).

RESULTS

- ISP Muscle edema:
 - Observed in all sheep,
 - Appeared hours after release,
 - Increased over time,
 - Led to a decrease in the fat percentage at 1-month follow-up
 - → Edema dilution effect

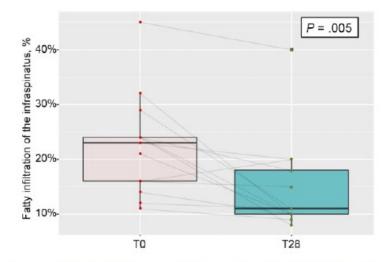
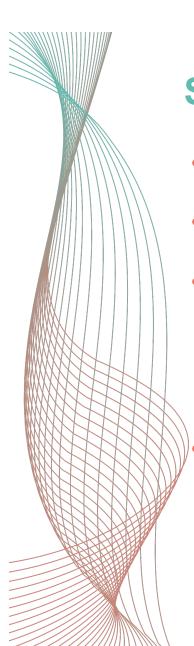
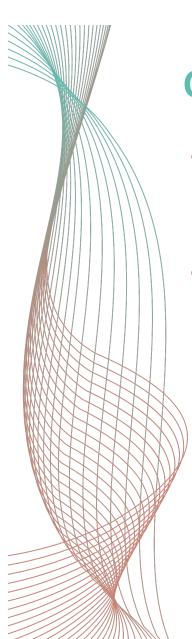
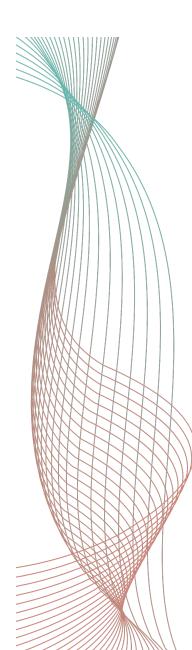



Figure 3. Box plot shows that the fat content (%) within the infraspinatus muscle of the sheep decreased significantly from immediately after surgery (T0) to 4 weeks after surgery (T28). The plots illustrate median values (bold lines), interquartile ranges (boxes), and 95% CIs (whiskers). The dots represent the sheep.



STUDY LIMITATIONS

- No inter- & intra-observer agreement.
- No further exams to exclude other causes of edema.
- Animal model may not be extrapolated to humans despite previous validation.
 - Sheep bear weight on their limbs, not humans.
- Short-term follow-up.



CONCLUSIONS

- Muscle edema was associated with acute and traumatic retracted rotator cuff tears.
- Edema of retraction has 2 important clinical implications:
 - 1. It can result in a pseudo-fatty infiltration imaging pattern.
 - Hyperintensity on T1- and T2 weighted but not 2-point Dixon pure-fat sequences.
 - 2. It influences the fat percentage within the muscle
 - Significant decrease in the fat percentage from 0 to 4 weeks after surgery due to the dilution effect of edema.

REFERENCES

- 1. Hertel R, Lambert SM. Supraspinatus rupture at the musculotendinous junction. J Shoulder Elbow Surg. 1998;7(4):432-435.
- 2. Lädermann A, Burkhart SS, Hoffmeyer P, et al. Classification of fullthickness rotator cuff lesions: a review. EFORT Open Rev. 2016;1(12):420-430.
- 3. Lädermann A, Christophe FK, Denard PJ, Walch G. Supraspinatus rupture at the musclotendinous junction: an uncommonly recognized phenomenon. J Shoulder Elbow Surg. 2012;21(1):72-76.
- 4. Walch G, Nove-Josserand L, Liotard JP, Noel E. Musculotendinous infraspinatus ruptures: an overview. Orthop Traumatol Surg Res. 2009;95(7):463-470
- 5. Gerber C, Meyer DC, Frey E, et al. Neer Award 2007. Reversion of structural muscle changes caused by chronic rotator cuff tears using continuous musculotendinous traction: an experimental study in sheep. J Shoulder Elbow Surg. 2009;18(2):163-171.
- 6. Gerber C, Meyer DC, Schneeberger AG, Hoppeler H, von Rechenberg B. Effect of tendon release and delayed repair on the structure of the muscles of the rotator cuff: an experimental study in sheep. J Bone Joint Surg Am. 2004;86(9):1973-1982.
- 7. Gerber C, Meyer DC, Von Rechenberg B, et al. Rotator cuff muscles lose responsiveness to anabolic steroids after tendon tear and musculotendinous retraction: an experimental study in sheep. Am JSports Med. 2012;40(11):2454-2461.
- 8. Matsumura N, Oguro S, Okuda S, et al. Quantitative assessment of fatty infiltration and muscle volume of the rotator cuff muscles using 3-dimensional 2-point Dixon magnetic resonance imaging. J Shoulder Elbow Surg. 2017;26(10):e309-e318.
- Nozaki T, Tasaki A, Horiuchi S, et al. Predicting retear after repair of full-thickness rotator cuff tear: two-point Dixon MR imaging quantification of fatty muscle degeneration. Initial experience with 1-year follow-up. Radiology. 2016;280(2):500-509.

