

Effect of Altered Knee Joint Loading Pattern in Gait Biomechanics of Total Knee Arthroplasty Patients

Sang Jin Lee Haeundae Paik Hospital, Inje University **Busan, Korea**

COI Disclosure Information

SANG JIN LEE Haeundae Paik Hospital, Inje University **Busan, Korea**

I have no financial relationships to disclose

Introduction

knee joint moment

Gait after TKA

- Slow walking / Limited knee excursion
- Decreased knee flexion moment (KFM)
- Monophasic pattern of knee adduction moment •

- Consistent knee flexion & extension moment
 - Sustained quadriceps & hamstring activity
 - Biphasic moment group did not ${\color{black}\bullet}$

Introduction

Aim of the study

- Previous studies did not discuss
 - When peak loading happens
 - Biomechanical changes by altered timing of peak knee • joint loading
- Compare the gait mechanics b/w groups distinguished by peak timing of KFM
- Whether altered knee joint loading pattern could be associated with pre-surgery gait function and how changed in adjacent joints

Materials

Classification of Groups

- Subject
 - Retrospectively review / TKA
 - KOOS, Gait analysis at preop. & one-year follow up
 - 43 patients / 60 TKAs / 9 control individuals
- Peak external KFM in gait cycle (GC)
 - Generally early mid stance phase (~25% GC)
 - 23% GC \rightarrow body vector in line with knee axis
 - Cut off \rightarrow Early peak (EP) less than 23% GC, 30 TKAs

Boston Later peak (LP) – more than 23% GC, 30 TKAs

Methods Gait analysis

- 3D gait biomechanics
 - 16 markers on lower limbs & 2 force plate
- Spatiotemporal, kinetic, kinematic data
 - Walking speed, step length,
 - % of stance phase, excursion, moment, power
- \rightarrow Normalized to the gait cycle (GC)
- \rightarrow Timing of peak loading percentage of the GC

Results

Between surgical groups (pre versus post, LP vs. EP)

	EP (30 TKAs)		LP (30 TKAs)		Within group	Between	effect of		
	Preop.	Postop.	Preop.	Postop.	difference	difference	interaction		
KOOS Pain	58.94 (16.04)	89.46 (11.76)	47.22 (15.03)	87.36 (11.10)	0.000	0.038	0.078		
KOOS Activities of daily living	59.66 (18.97)	87.53 (9.08)	48.26 (16.58)	84.86 (10.66)	0.000	0.049	0.119		
Timing of peak KFM (%GC)	34.30 (17.57)	15.93 (4.23)	38.87 (16.26)	39.43 (14.24)	0.002	0.000	0.001		
Mean foot progress angle during Stance (°)	9.33 (8.26)	8.22 (6.39)	10.63 (9.42)	13.37 (7.57)	0.272	0.100	0.011		
K5 power absorption (W/kg)	0.49 (0.27)	0.96 (0.40)	0.42 (0.33)	0.66 (0.36)	0.000	0.012	0.030		

Results

Results

Discussion

KFM & KAM (knee adduction moment)

- Typical biphasic pattern in EP
- No biphasic in LP
- → Force is continuously loaded on knee joint with no release
- Reversely changed
 (Preop. → Postop.)

	E (30 T	P 'KAs)	LP (30 TKAs)		
	Preop.	Postop.	Preop.	Postop.	
Timing of peak KFM (%GC)	34.30 (17.57)	15.93 (4.23)	38.87 (16.26)	39.43 (14.24)	

Discussion

Toe-out angle

- Out-toeing gait in OA patients Tazawa 2014
 → reduction of KAM during late stance
- Decreased med./lat. hamstring activation ratio in medial knee OA Lynn 2008
- Moving ground reaction force (GRF) vector close to the center of knee joint
 → Reducing KAM

Conclusion

- The persistent gait abnormalities including toe out gait and reduction of knee absorption power during terminal swing were more noticeable in LP group
- Patients who had more pain and less daily activity were included in LP group
- Peak timing of KFM could be helpful to understand the abnormal gait pattern and to develop the targeted rehabilitation after TKA
 - \rightarrow Hip and knee muscle strengthening for EP group
 - → Balanced exercise between medial and lateral muscles as well as hip, knee and ankle muscle strengthening for LP group

References

1.Ro, D.H., et al., Quantitative evaluation of gait features after total knee arthroplasty: Comparison with age and sex-matched controls. Gait Posture, 2020. 75: p. 78-84.

Naili, J.E., et al., Improved knee biomechanics among patients reporting a good outcome in knee-related quality of life one year after total knee arthroplasty. BMC Musculoskelet Disord, 2017. 18(1): p. 122.
 Han, H.-S., et al., Slow gait speed after bilateral total knee arthroplasty is associated with suboptimal improvement of knee biomechanics. Knee Surgery, Sports Traumatology, Arthroscopy, 2018. 26(6): p. 1671-1680.
 Walter, J.P., et al., Decreased knee adduction moment does not guarantee decreased medial contact force during gait. Journal of orthopaedic research, 2010. 28(10): p. 1348-1354.

5.Smith, A.J., D.G. Lloyd, and D.J. Wood, Pre-surgery knee joint loading patterns during walking predict the presence and severity of anterior knee pain after total knee arthroplasty. Journal of Orthopaedic Research, 2004. 22(2): p. 260-266. 6.Wilson, S.A., et al., Comprehensive gait analysis in posterior-stabilized knee arthroplasty. The Journal of arthroplasty, 1996. 11(4): p. 359-367.

7.Hilding, M.B., H. Lanshammar, and L. Ryd, Knee joint loading and tibial component loosening: RSA and gait analysis in 45 osteoarthritic patients before and after TKA. The Journal of bone and joint surgery. British volume, 1996. 78(1): p. 66-73. 8.Levinger, P., et al., Lower limb biomechanics in individuals with knee osteoarthritis before and after total knee arthroplasty surgery. J Arthroplasty, 2013. 28(6): p. 994-9.

9. Ardestani, M.M., et al., Computational analysis of knee joint stability following total knee arthroplasty. Journal of biomechanics, 2019. 86: p. 17-26.

10.Perry, J. and J.M. Burnfield, Gait analysis: normal and pathological function. 2010.

11.Birmingham, T., et al., Changes in biomechanical risk factors for knee osteoarthritis and their association with 5-year clinically important improvement after limb realignment surgery. Osteoarthritis and cartilage, 2017. 25(12): p. 1999-2006. 12.Sosdian, L., et al., Longitudinal changes in knee kinematics and moments following knee arthroplasty: a systematic review. The Knee, 2014. 21(6): p. 994-1008.

13.O'Connell, M., S. Farrokhi, and G.K. Fitzgerald, The role of knee joint moments and knee impairments on self-reported knee pain during gait in patients with knee osteoarthritis. Clin Biomech (Bristol, Avon), 2016. 31: p. 40-6. 14.Slemenda, C., et al., Reduced quadriceps strength relative to body weight: a risk factor for knee osteoarthritis in women? Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 1998. 41(11): p. 1951-1959.

15. Farrokhi, S., et al., Altered gait characteristics in individuals with knee osteoarthritis and self-reported knee instability. J Orthop Sports Phys Ther, 2015. 45(5): p. 351-9.

16.Marriott, K.A., et al., Strong independent associations between gait biomechanics and pain in patients with knee osteoarthritis. Journal of biomechanics, 2019. 94: p. 123-129.

17. Sharma, L., et al., Quadriceps strength and osteoarthritis progression in malaligned and lax knees. Annals of internal medicine, 2003. 138(8): p. 613-619.

18.Ro, D.H., et al., Effects of knee osteoarthritis on hip and ankle gait mechanics. Advances in orthopedics, 2019. 2019.

19. Alice, B.-M., et al., Evolution of knee kinematics three months after total knee replacement. Gait & posture, 2015. 41(2): p. 624-629.

20.Hafer, J.F., J.A. Kent, and K.A. Boyer, Physical activity and age-related biomechanical risk factors for knee osteoarthritis. Gait & posture, 2019. 70: p. 24-29.

21.Benedetti, M., et al., Muscle activation pattern and gait biomechanics after total knee replacement. Clinical biomechanics, 2003. 18(9): p. 871-876.

22. Stevens-Lapsley, J.E., et al., Quadriceps and hamstrings muscle dysfunction after total knee arthroplasty. Clin Orthop Relat Res, 2010. 468(9): p. 2460-8.

23.Na, A. and T.S. Buchanan, Self-reported walking difficulty and knee osteoarthritis influences limb dynamics and muscle co-contraction during gait. Hum Mov Sci, 2019. 64: p. 409-419.

24.McClelland, J.A., et al., Knee kinematics during walking at different speeds in people who have undergone total knee replacement. The Knee, 2011. 18(3): p. 151-155.

25.Tazawa, M., et al., Toe-out angle changes after total knee arthroplasty in patients with varus knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc, 2014. 22(12): p. 3168-73.

26.Guo, M., M.J. Axe, and K. Manal, The influence of foot progression angle on the knee adduction moment during walking and stair climbing in pain free individuals with knee osteoarthritis. Gait Posture, 2007. 26(3): p. 436-41.

27.Lynn, S.K. and P.A. Costigan, Effect of foot rotation on knee kinetics and hamstring activation in older adults with and without signs of knee osteoarthritis. Clin Biomech (Bristol, Avon), 2008. 23(6): p. 779-86.

28.Cofre, L.E., et al., Aging modifies joint power and work when gait speeds are matched. Gait Posture, 2011. 33(3): p. 484-9.

29. Monaco, V., et al., During walking elders increase efforts at proximal joints and keep low kinetics at the ankle. Clinical biomechanics, 2009. 24(6): p. 493-498.

30.JudgeRoy, J.O., B. Davis III, and S. Õunpuu, Step length reductions in advanced age: the role of ankle and hip kinetics. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 1996. 51(6): p. M303-M312. 31.Christensen, J.C., et al., Gait mechanics are influenced by quadriceps strength, age, and sex after total knee arthroplasty. J Orthop Res, 2020.

32.McGibbon, C.A., Toward a better understanding of gait changes with age and disablement: neuromuscular adaptation. Exercise and sport sciences reviews, 2003. 31(2): p. 102-108.

ure, 2007. 26(3): p. 436-41. p. 779-86.