

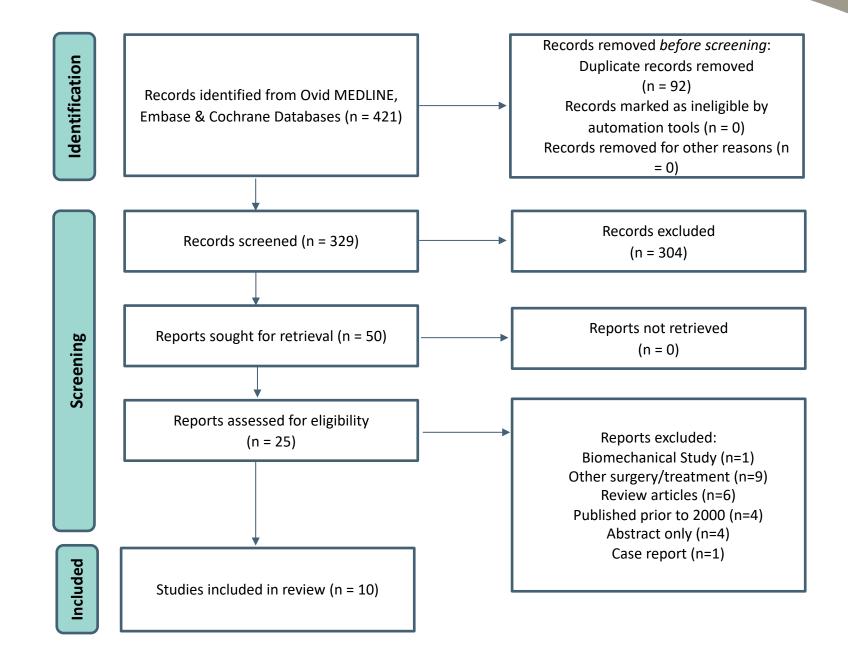
Outcomes of Isolated HTO and simultaneous HTO and ACL reconstruction: A Systematic Review & Meta-Analysis

¹Royal Wolverhampton NHS Trust, Wolverhampton, UK
²Wirral University Teaching Hospital NHS Trust, Liverpool, UK
³Royal Orthopaedic Hospital, Birmingham, UK
⁴The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK

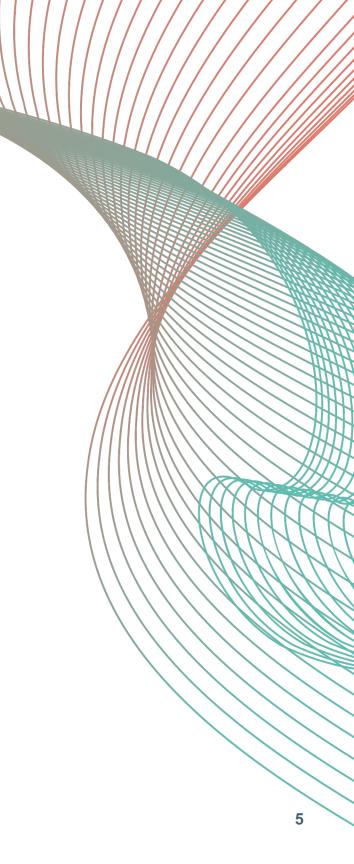
V Dewan: Nothing to disclose L Rohman: Nothing to disclose M.Snow:

Aims

- Review the current evidence on the management ACL deficient knees with medial compartment degeneration treated with isolated HTO or simultaneous HTO and ACL reconstruction
- To assess the following outcomes:
 - Functional outcome scores
 - Progression of OA
 - Revision and failure rate
 - Complications



Methods


- Study was conducted in accordance with the 2020 PRISMA¹
- Ovid MEDLINE, Embase and Cochrane databases in addition to reference checking
- Inclusion criteria:
 - Any study assessing HTO and ACLR combined or HTO alone for ACLD knees in the setting of MCOA
- Exclusion criteria:
 - Published before 2000, not published in the English language, revision ACLR, cadaveric studies, biomechanical studies

Results

Study Characteristics & Surgical Technique

	HTO + ACL	Isolated H
Total number of patients	145	128
Number of studies	8	3
Level III evidence	2	2
Level IV evidence	6	1
Mean age	38.8yrs	39.5yrs
Mean follow-up	51.2 months	120.3 mor
SURGICAL TECHNIQUE		
Closing wedge osteotomy	32 (22%)	116 (90.6
Open wedge osteotomy	113 (78%)	12 (9.4%
Hamstring ACLR	88.3%	NA
BTB ACLR	11.7%	NA

HTO

- ^S onths
- 6%)
- %)

Functional Outcome Scores

GROUP	Number	Pre-Operative	Post-Operative
Lysholm Score			
ACL + HTO	111/145	52.3 (95% CI: 47.52-57.15)	82.7 (95% CI: 73.03-9
HTO	26/128	46.8	76.3
IKDC Knee Score			
ACL + HTO	42/145	47.6	72.4
НТО	26/128	NR	64.8
Tegner Score			
ACL + HTO	28/145	2.9	4.7
HTO	26/128	3.8	4.9

Statistical Significance (pvalue)

8-92.36) P<0.05

P<0.001

P<0.05

P<0.001

P<0.02

Progression of Osteoarthritis

- 3 studies in combined surgical group and 1 study in HTO group reported pre- and post-operative OA grading
- Quality of data prohibited analysis
- All studies demonstrated progression of OA in both treatment groups
- Williams et al²: Reported a statistical significant progression of radiographic OA (p<0.03) in HTO group but there was no correlation with Lysholm score ($r^2=0.36$).
- Mehl et al³: Progression of Kellgren-Lawrence grade in both treatment groups (p<0.001)
 - Greater progression of OA in HTO/ACLR group compared to HTO only group (p>0.05)

Cartilage Status

Author	Compartment	Pre-Operative	Post-Operative	
HTO + ACL Kellgrer	n-Lawrence Grading			
Jin et al ⁴ (2018)	Medial	Gd1: 10 Gd2: 9 Gd3: 5	Gd1: 8 Gd2: 10 Gd3: 6	
Mehl et al ³ (2017)	Medial	Gd 1.9*	Mean increase of 0.61	
HTO + ACL ICRS Ar	throscopic Grading			
Akamatsu et al ⁵ (2010)	Medial	Gd1: 0 (0) Gd2: 3 (3) Gd3: 1 (1)	Gd1: 0 Gd2: 3 Gd3: 1	
	Lateral	Gd1: 4 (1) Gd2: 0 (3) Gd3: 0 (0)	Gd1: 1 Gd2: 3 Gd3: 0	
Isolated HTO Kellgr	en-Lawrence			
Mehl et al ³ (2017)	Medial	2.7*	Mean increase of 0.39	
Isolated HTO HSS R	adiography Score			
Williams et al ² (2003)	Medial	20.5	19.3	

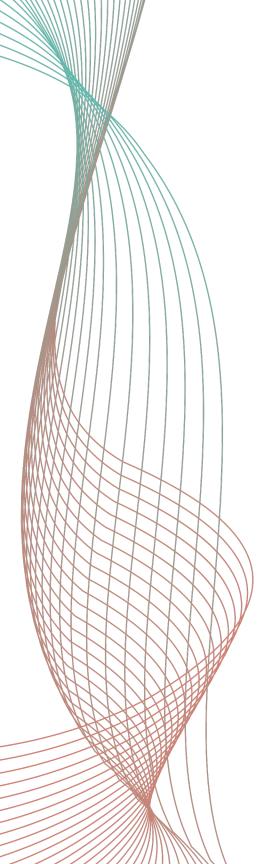
*Mean grade of OA

Statistical Significance
0.682
NR
NR
NR
NR
< 0.03

Knee Joint Laxity

HTO & ACL Combined Group

- 8 studies reported knee joint laxity
- All studies reported an improvement in knee joint laxity
- Only one study (Jin et al⁴) reported statistical significance of their results(p<0.001)


HTO Only Group

- 2 studies reported knee joint laxity
- testing not reported)

Williams et al² reported that HTO alone had no impact on the persistence of a positive Lachman or pivot-shift test

Mehl et al³ performed KT 2000 arthrometer testing: no major difference (statistical significance

Complications & Failure

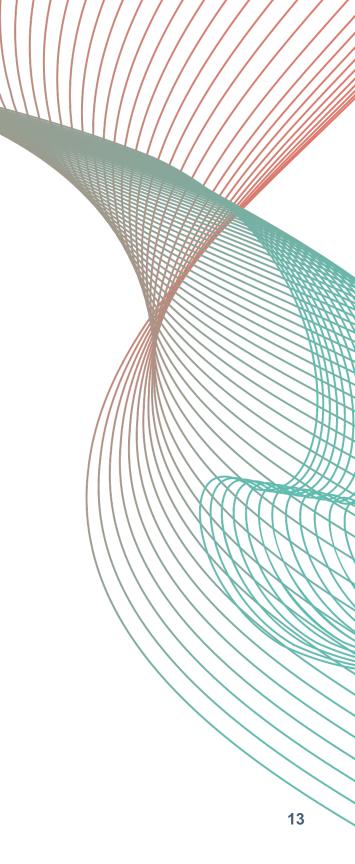
Complication	HTO + ACL (n=119)	
Infection	1	
Notchplasty (for painful catching)	3	
Stiffness	1	
Pain requiring arthroscopic surgery	2	
Patellar tendinitis	1	
Prominent hardware	14	
Revision Osteotomy	2	
TKR	0	
Complication rate	20.2% (9.5%)	1

Isolated HTO (n=38)

0 0 0 10.5% (8.1%)

Conclusion

- The evidence available was poor in both treatment strategies limiting conclusions.
- Both treatments result in a significant improvement in outcome scores post-surgery
 - Trend towards improved outcomes in combined
- OA progression occurs in both groups
- Complication rates between procedures are comparable



References

1. Page MJ, McKenzie JE, Bossuyt PM, et al. Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epidemiol 2021;S0895-4356

- 2. Williams RJ 3rd, Kelly BT, Wickiewicz TL, Altchek DW, Warren RF (2003) The short-term outcome of surgical treatment for painful varus arthritis in association with chronic ACL deficiency. J Knee Surg 16(1):9–16
- 3. Mehl J, Paul J, Feucht MJ, Bode G, Imhoff AB et al (2017) ACL deficiency and varus osteoarthritis: high tibial osteotomy alone or combined with ACL reconstruction? Arch Orthop Trauma Surg 137(2):233–240
- 4. Jin C, Son EK, Jin QH et al. Outcomes of simultaneous high tibial osteotomy and anterior cruciate ligament reconstruction in anterior cruciate deficient knee with osteoarthritis. BMC Musculoskeletal Disorders. 2018;19:228
- 5. Akamatsu Y, Mitsugi N, Taki N, Takeuchi R, Saito T (2010) Simultaneous anterior cruciate ligament reconstruction and opening wedge high tibial osteotomy: report of four cases. Knee 17(2):114–118

