

### E-Poster: ID# 22823

### Use of Custom Glenoid Components for Reverse Shoulder Total Arthroplasty

Punyawat Apiwatanakul, MD; Prashant Meshram, MS, DNB; Andrew B Harris; MD, Joel Bervell; MS, Piotr Lukasiewicz, MD, PhD; Ridge Maxson, BS; Matthew J Best; MD, Edward G McFarland, MD\*

Division of Shoulder Surgery, Department Of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD





# **Disclosures:**

- As listed on AAOS website

- None related to this poster



## Introduction

- Severe glenoid bone loss in reverse shoulder arthroplasty (RTSA) is a controversial topic
- Bone grafting may result in high failure rates
- Metal augmented glenoid baseplate: long term outcomes are awaited









## Introduction

- Customized glenoid components have been reported to be a viable solution for patients with large bone defects
- However, there are only a few studies evaluating the strengths and limitations of using these implants













To evaluate short-term clinical and radiographic outcomes after RSA using a custom glenoid baseplate for severe glenoid bone loss done by single surgeon at one tertiary care institute.







# Methods: Patients

- Custom glenoid was created for 29 patients between 2017 and 2022 for severe extensive glenoid bone loss
  - 22 underwent the surgery

ISAKOS

CONGRESS

2023

9 had a follow up of 2 years

**Boston** 

Massachusetts June 18-June 21



### 4 patients had a custom glenoid made but did not undergo surgery because of medical conditions

### 3 patients had a mismatched custom glenoid implant at surgery. A standard baseplate was used instead

### 13 Patients had less than 2 years of follow-up



### Characteristics of 9 Patients with Min 2 Years Follow Up

| Patient | Age, <u>yr</u> | Sex | Follow-up, | Prior        | Presence of Implants        | Indication for Surgery                   | Defect Classification                                           |  |  |
|---------|----------------|-----|------------|--------------|-----------------------------|------------------------------------------|-----------------------------------------------------------------|--|--|
| No.     |                |     | ma         | Arthroplasty |                             |                                          |                                                                 |  |  |
| 1       | 78.0           | F   | 60         | 2            | Hemiarthroplasty            | Failed RTSA                              | Antuna, severe combined<br>central and posterior                |  |  |
| 2       | 68.6           | Μ   | 51         | 2            | Hemiarthroplasty            | Failed TSA                               | Antuna, severe combined central and anterior                    |  |  |
| 3       | 65.2           | F   | 48         | 0            | None                        | Dislocation arthropathy                  | Walch, A2                                                       |  |  |
| 4       | 80.3           | F   | 24         | 0            | None                        | Chronic anterior fracture<br>dislocation | Walch, D                                                        |  |  |
| 5       | 80.1           | М   | 42         | 0            | None                        | Cuff tear arthropathy                    | Favard E31 Walch A2;<br>Hamada IIB; Erankle superior<br>erosion |  |  |
| 6       | 74.5           | F   | 40         | 0            | None                        | Degenerative arthritis                   | Walch, C                                                        |  |  |
| 7       | 71.4           | М   | 30         | 3            | Hemiarthroplasty            | Failed TSA                               | Antuna, severe combined anterior, central, and posterior        |  |  |
| 8       | 72.3           | М   | 31         | 4            | Antibiotic cement<br>spacer | Infected RTSA                            | Antuna, severe combined anterior, central, and posterior        |  |  |
| 9       | 78.3           | F   | 27         | 0            | None                        | Cuff tear arthropathy                    | Favard E1; Walch D; Hamada IIB; Frankle anterior erosion        |  |  |

F, female; M, male; RTSA, reverse total shoulder arthroplasty; TSA, anatomic total shoulder arthroplasty.







- Patients were evaluated preoperatively and • every year postoperatively for
  - Patient-reported outcome measures (ASES, SST, SANE, WOOS)
  - Range of motion
  - X-rays
- Intra- and post-operative complications were reported





### **Results:** Mismatch of Custom implant and Glenoid

- Of 25 patients who had surgery, the custom implant was unable to be matched in 4 patients
- For these 4, time from CT scan to implantation averaged 7.6 months (range 6.1–10.7 months), compared with 5.5 months (range 2–8.6 months) for those implanted without difficulty.





### Results: Improved Motion and Function at 2 Year F/U

| Outcome                                        | Mean         | Devalers      |                |
|------------------------------------------------|--------------|---------------|----------------|
|                                                | Preoperative | Postoperative | <i>P</i> value |
| Range of motion, °                             |              |               |                |
| Abduction                                      | 73.9 (33.1)  | 95.6 (39.7)   | 0.03++         |
| Flexion                                        | 73.9 (33.1)  | 100.0 (40.3)  | 0.03++         |
| External rotation                              | 46.7 (16.6)  | 60.0 (20.2)   | 0.05           |
| External rotation (arm at side)                | 10.6 (23.8)  | 20.0 (21.7)   | 0.24           |
| Internal rotation                              | 17 (15.8)    | 6.1 (31.6)    | 0.39           |
| Internal rotation (hand behind back)*          | Buttock*     | L4/L5*        | 0.02**         |
| Functional outcome                             |              |               |                |
| ASES                                           | 26.6 (22.6)  | 68.1 (26.6)   | < 0.01**       |
| SST                                            | 4.0 (3.0)    | 8.0 (2.8)     | 0.02**         |
| SANE                                           | 34.7 (22.0)  | 69.6 (27.3)   | < 0.01**       |
| WOOS                                           | 32.7 (22.2)  | 64.1 (27.3)   | < 0.01**       |
| Pain (visual analogue scale)                   | 8.2 (1.3)    | 1.5 (2.3)     | < 0.01**       |
| Report satisfaction, median (IQR) <sup>+</sup> | 1.6 (1-2)*   | 3.7 (2–5)*    | < 0.01**       |

\*Internal rotation rated ordinally as follows: 1, T10/T11; 2, T12/L1; 3, L2/L3; 4, L4/L5; 5, sacrum; 6, buttock; 7, hip/lateral thigh.

<sup>†</sup>Expressed as median (interquartile range). <sup>††</sup>Significant value (P < .05)

ASES, American Shoulder and Elbow Surgeons; IQR, interquartile range; RTSA, reverse total shoulder arthroplasty; SANE, Single Assessment Numeric Evaluation; SD, standard deviation; SST, Simple Shoulder Test; WOOS, Western Ontario Osteoarthritis of the Shoulder Index









### Results: Complications Periprosthetic fracture 37%

| Complication in 22 patients who had<br>custom glenoid |   |
|-------------------------------------------------------|---|
| Central Screw no Compression ("Spinner")              | 8 |
| Toggling of implant                                   | 4 |
| Complete missed screw trajectory                      | 2 |
| Unexpected positive culture (C. acnes)                | 6 |
| Acromial/scapular fracture                            |   |
| Greater tuberosity fracture                           | 5 |
| Proximal humeral fracture                             |   |







## Conclusions

Use of Custom Glenoid Components for Reverse Shoulder Total Arthroplasty

- Prolonged time of >6 months from CT scan to device implantation resulted in additional bone loss rendering the implants unusable
- Satisfactory short-term radiographic and clinical follow-up at a minimum of 2 years can be achieved with a well-fitting device





## References

### Use of Custom Glenoid Components for Reverse Shoulder Total Arthroplasty

• 1. Antuna SA, Sperling JW, Cofield RH, Rowland CM. Glenoid revision surgery after total shoulder arthroplasty. J. Shoulder Elbow Surg. 2001 Jun;10(3):217–224. doi:10.1067/mse.2001.113961

- 2. Bercik MJ, Kruse K, Yalizis M, Gauci M-O, Chaoui J, Walch G. A modification to the Walch classification of the glenoid in primary glenohumeral osteoarthritis using three-dimensional imaging. J. Shoulder Elbow Surg. 2016 Oct;25(10):1601–1606. doi:10.1016/j.jse.2016.03.010
- 3. Bodendorfer BM, Loughran GJ, Looney AM, Velott AT, Stein JA, Lutton DM, et al. Short-term outcomes of reverse shoulder arthroplasty using a custom baseplate for severe glenoid deficiency. J. Shoulder Elbow Surg. 2021 May;30(5):1060–1067. doi:10.1016/j.jse.2020.08.002
- 4. Boon AJ, Smith J. Manual scapular stabilization: its effect on shoulder rotational range of motion. Arch. Phys. Med. Rehabil. 2000 Jul;81(7):978–983. doi:10.1053/apmr.2000.5617
- 5. Chalmers PN, Boileau P, Romeo AA, Tashjian RZ. Revision reverse shoulder arthroplasty. J. Am. Acad. Orthop. Surg. 2019 Jun 15;27(12):426–436. doi:10.5435/JAAOS-D-17-00535



