

CINELIN REPORT

Welcome

isakos.com/2023 • #ISAKOS2023

The Influence of Different Rotator Cuff Tears In Relation to Glenoid Depth on Glenohumeral Stability A Robotic Biomechanical Analysis

M Wiethölter, J Wermers, P Michel, C Schenk S Tänzler, M J Raschke, J C Katthagen

University Hospital Münster - Departement for Trauma, Hand and Reconstructive Surgery, Münster, Germany (Director: Univ.-Prof. Dr. med. M.J. Raschke)

No conflicts of interest No financial support from any kind of third-party funds

Backround – Influence of rotator cuff and concavity on joint stability

Active partner - Rotator cuff

- Crucial role of "the force couples" 1
- Preservation of the coronary and transverse couple essential ²
- Outstanding role for M. subscapularis (SSC)³

Passive partner - Glenoid concavity

- Bone loss alone is not sufficient to represent biomechanical situation ^{5,6}
- Bony shoulder stability ratio (BSSR) as a calculation method ⁵
- Confirmation of the theory and the finite model by biomechanical studies of our group ⁶

Introduction

- Aim of this study
 - Investigation of the Influence of different Rotator Cuff Tears (RCTs) in relation to glenoid depth on glenohumeral stability (GHS) by robotic biomechanical analysis

- Hypotheses
 - M.subscapularis (SSC) rupture has a greater impact on the GHS than other ruptures of single tendons
 - A distinctive glenoid depth or high BSSR increases the GHS

Material and methods

- 8 human cadaver shoulders included (Ø Age 82,25 ± 8,12 (76-98) years)
 - Dissection of the rotator cuff and the long biceps tendon
- Coordinate system based on marked anatomical landmarks + CT
- Fixation of the scapula as well as the humerus in rail construct
- Movement and measurement of forces with industrial robot, robot-specific

software and force-torque sensor

•

_

Test Execution

- Loading of the reinforced tendons according to their cross-sectional area
 - 8 optional configurations (SSP, SCP, ISP/TM, DLT)
- Glenohumeral abduction of 60°
- Starting position by centering the humeral head
- Subsequently Start Load & Shift sequence
- Analysis of

•

- Maximum force (Fmax) in N
- Maximum force increase (dFmax) in N/mm
- Glenoid depth in mm

Results – Force maximum

Boston

Massachusetts

June 18-June 21

ISAKOS

ONGRESS

2023

- p < 0,001 to intact RTC + DLT</p>
 - Single tendon ruptures
 - Δ Fmax SSC 7,9 N
 - △Fmax ISP/TM 7,2 N
 - △Fmax SSP 3,8 N
- Combined ruptures
 - Δ Fmax SSP + ISP/TM 12,1 N
 - Δ Fmax SSP + SSC 11,9 N
- Mass rupture
 - △Fmax SSP + SSC + ISP/TM 19,6 N

Results – Maximum force increase

Boston Massachusetts

June 18-June 21

SAKOS

ONGRESS

- p < 0,05 to intact RTC + DLT
- Single tendon ruptures
 - ∆dFmax SSC 1,5 N/mm
 - ∆dFmax ISP/TM 1,5 N/mm
 - ∆dFmax SSP 1,2 N/mm
- **Combination ruptures**
 - ∆dFmax SSP + ISP/TM 1,7 N/mm
 - ∆dFmax SSP + SSC 2,2 N/mm
- Mass rupture

∆dFmax SSP + SSC + ISP/TM 2,7 N/mm

Results – Correlation with glenoid depth

Boston

Massachusetts

June 18-June 21

ISAKOS

CONGRESS

2023

Linear regression between glenoid depth and maximum force

 \rightarrow r = 0,81

Linear regression between glenoid depth and maximum force increase

 \rightarrow r = 0,58

Limitations

Simplified model

- Absence of muscle loading does not simulate rupture (but atony)
- Soft tissues remain as passive stabilizer
- Physiological pull depends on training condition
- Relatively small number of specimens

