

ST THEFT

Welcome

isakos.com/2023 • #ISAKOS2023

Clinical Outcomes in Patients Undergoing Reverse Shoulder Arthroplasty for Dislocation Arthropathy vs Osteoarthritis of the Shoulder

J Lu BA¹, P Apiwatanakul MD^{2,3}, P Meshram MS, DNB⁴, J Bervell MS¹, V Varzhapetyan MD³, R Maxson BS¹, P Lukasiewicz MD¹, U Srikumarao MD³, E McFarland MD³

- 1. Johns Hopkins University School of Medicine, Baltimore, MD
- 2. Khon Kaen University, Khon Kaen, Thailand
- 3. Johns Hopkins University Department of Orthopaedic Surgery, Baltimore, MD
- 4. Orthocure Medical Center, Dubai, UAP

Disclosures:

- U Srikumaran Tigon Medical, Thieme, Fx Shoulder, OrthoFix, Quantum OPS, ROM3, Sonogen, Arthrex, DePuy, Smith and Nephew, OMEGA, ASES
 Fellowship Grants, Stryker, Wright Medical
 Technology, board or committee member for (AAOS, ASES, IASES)
- E McFarland DePuy, Stryker

Introduction

- Dislocation arthropathy (DA) of the shoulder is an advanced arthritis due to a history of shoulder dislocations.¹
- There is no consensus on the best operative management of DA, but reverse shoulder arthroplasty (RSA) is an emerging favorable choice of arthroplasty.²⁻⁵
- However, results for RSA in DA patients are limited to a few studies.⁶⁻⁹
- The goal of this study was to compare the clinical results of RSA in patients with DA with patients having glenohumeral osteoarthritis (OA) with intact cuff and severe bone loss.

Methods <u>Study design and participant selection</u>

- Retrospective matched cohort study of patients who underwent RSA performed by one surgeon between 2004 and 2019
- All patients were 1:3 matched to patients who underwent RSA for primary osteoarthritis, according to age, gender, BMI, and prosthesis type.
- Final cohort consisted of 13 patients with DA and 39 patients with primary OA.

Methods Continued

Figure 1. Flowchart of patient selection and matching process

Osteoarthritis patients (n=39) Avg. follow-up 3.25 yrs

Methods Continued

Figure 2. Imaging of patient with dislocation arthropathy.

- A. Preoperative X-ray showing implant from previous glenohumeral stabilization surgery
- B. Preoperative axial cut of CT scan showing a B3 modified Walch type glenoid.
- C. Postoperative X-ray of the same patient at follow-up of 2 years after reverse shoulder arthroplasty.

/. ation surgery enoid.

Table 1 Comparison of baseline variables between DA and OA group

	DA group N=13	OA group N=39	
Age, years (Mean ± SD)	58.1±14.9	64.8±9.6	
Follow-up length, years (range)	3.51 (2-8.91)	3.25 (2-10.1)	
Sex, male, N (%)	12 (92)	36 (92)	
BMI, kg/m ² (range)	29.04 (22.4-38.5)	30.90 (19-50)	

p-value		
0.12		
0.90		
1.00		
0.39		

Results continued

Table 2 Comparison of preoperative and final postoperative range of motion and patient reported outcomes in patients treated with RSA for dislocation arthropathy.

	Preop DA group N=13, (Mean ± SD)	Postop DA group N=39, (Mean ± SD)	p-value	
Range of motion				
Abduction, degrees	98.07±31.52	138.5±15.64	<0.01*	
Flexion°, degrees	97.30±31.59	138.5±15.64	<0.01*	
ER at 90°, degrees	31.15±20.42	61.66±23.71	<0.01*	
ER at side, degrees	4.61±21.35	21.66±14.14	0.02*	
IR at 90°, degrees	11.53±20.75	30.0±21.21	0.08	
Patient report outcomes				
SST	5±2.56	8.87±2.23	0.01*	
ASES	36.91±15.58	83.91±12.74	0.01*	
WOOS	33.31±16.57	74.81±19.87	0.01*	
SANE	20.8±16.30	83.2±11.43	<0.01*	
Satisfaction (Median, IQR)	1 (1,2)	4 (3,5)	<0.01*	

Results continued

 Table 3 Comparison of final postoperative range of motion and patient
 reported outcomes between patients in DA group and OA group treated with RSA

	DA group	OA group	p-value	
	N=13, (Mean ± SD)	N=39, (Mean ± SD)		
Range of motion				
Abduction, degrees	138.33±16.58	127.69±19.46	0.10	
Flexion°, degrees	138.33±16.58	126.28±20.15	0.07	
ER at 90°, degrees	60.62±25.13	62.94±14.58	0.70	
ER at side, degrees	24.37±12.37	31.41±11.80	0.06	
IR at 90°, degrees	32.5±21.21	27.94±22.02	0.90	
Patient report outcomes				
SST	8.87±2.23	9.17±3.19	0.32	
ASES	83.91±12.74	82.73±22.08	0.47	
WOOS	74.81±19.87	72.06±24.42	0.95	
SANE	83.90±11.10	68.14±33.83	0.62	
Satisfaction (Median, IQR)	4 (3,5)	4 (3,5)	0.92	
Complications (%)	0 (0%)	5 (13%)	0.41	

Conclusions

- Here, we report on the first single center, single surgeon study to assess the clinical and radiographic outcomes of patients undergoing RSA for dislocation arthropathy in comparison to a matched cohort of patients with primary OA.
- Clinical results of RSA for DA treated with eccentric reaming are comparable to the results of a matched cohort of OA patients with similar treatment.
- At the short term follow up, RSA with eccentric glenoid reaming is a valid treatment strategy in patients with DA but studies with larger sample size and longer follow up are warranted.

References

 Samilson RL, Prieto V (1983) Dislocation arthropathy of the shoulder. J Bone Joint Surg Am. 1983 Apr;65(4):456-60. PMID: 6833319

- 2. Werner BS, Gohlke F (2010) Cementless humeral head replacement for dislocation arthropathy of the shoulder joint [German]. Orthopaede 2010;39;1036-1043.
- Bigliani L, Weinstein D, Glasgow M (1995) Glenohumeral arthroplasty for arthritis after instability surgery. J Shoulder Elb Surg 4:87–94
- 4. Lehmann L, Magosch P, Mauermann E, Lichtenberg S, Habermeyer P (2010) Total shoulder arthroplasty in dislocation arthropathy. Int Orthop 34:1219–1225. https://doi.org/10.1007/ s00264-009-0928-5
- Bender MJ, Morris BJ, Sheth MM, Laughlin MS, Budeyri A, Le RK, Elkousy HA, Edwards TB (2020) Outcomes of total shoulder arthroplasty for instability arthropathy with a prior coracoid transfer procedure: a retrospective review and matched cohort. J Shoulder Elbow Surg. 2020 Jul;29(7):1316-1322. doi: 10.1016/j.jse.2019.12.009. Epub 2020 Mar 4. PMID: 32146043.
- Clavert, P, Kling A, Sirveaux F, Favard L, Mole D, Walch G, Boileau P (2018) Reverse shoulder arthroplasty for instability arthropathy. Int Orthop 43:1653–1658. <u>https://doi.org/10.1007/s00264-018-4123-4</u>
- Chalmers BP, Wagner ER, Houdek MT, Sperling JW, Cofield RH, Sanchez-Sotelo J. Outcomes of Primary Reverse Shoulder Arthroplasty for Dislocation Arthropathy. Journal of Shoulder and Elbow Arthroplasty. January 2017. doi:10.1177/2471549217717165
- Tyler A. Luthringer, Christopher A. Colasanti, Charles C. Lin, Christopher Roche, Kevin M. Magone, Joseph D. Zuckerman. Anatomic and Reverse Total Shoulder Arthroplasty for Dislocation Arthropathy Yield Comparable Functional Outcomes to Matched Cohort, Seminars in Arthroplasty: JSES, 2021, ISSN 1045-4527, https://doi.org/10.1053/j.sart.2021.09.002.
- 9. Raiss P, Zeifang F, Pons-Villanueva J, Smithers CJ, Loew M, Walch G (2014) Reverse arthroplasty for osteoarthritis and rotator cuff deficiency after previous surgery for recurrent anterior shoulder instability. Int Orthop 38:1407–1413. DOI 10.1007/s00264-014-2325-y

