Ideal Combination of Anatomic Tibial and Femoral Tunnel Positions for Single-Bundle ACL Reconstruction

Kyoung Ho Yoon, MD, Cheol Hee Park, MD, Sang-Gyun Kim, MD, <u>Jae-Young Park</u>, MD, Yoon-Seok Kim, MD, Hee Sung Lee, MD, Sung Hyun Hwang, MD, Dae Keun Suh, MD, Bo Seung Bae, MD

Department of Orthopaedic Surgery, Kyung Hee University Hospital Seoul, Korea

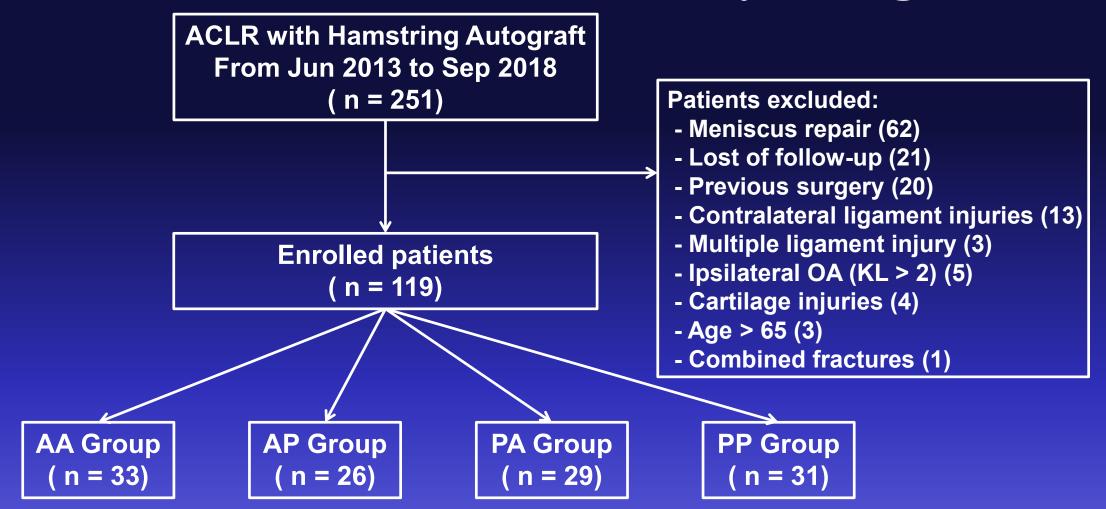
Disclosure

No conflicts of interest

Introduction

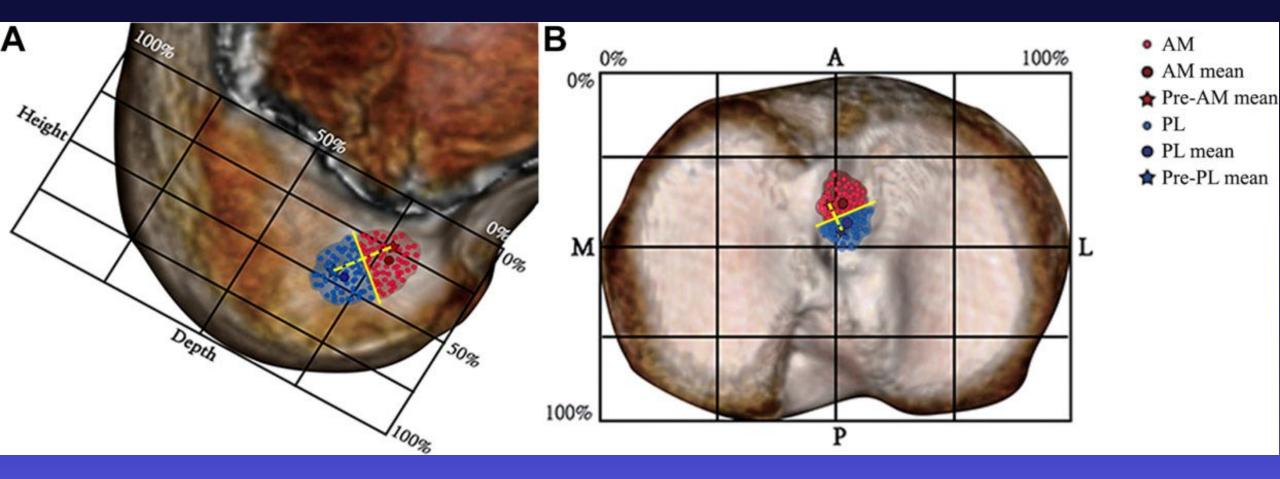
Recently anatomic ACL reconstruction is preferred to non-anatomic (isometric) ACL reconstruction.

Proper positioning of the anteromedial (AM) and posterolateral (PL) ACL bundles of the tibial and femoral tunnels is important for successful ACLR.


However, there is no consensus on which point the tunnels should be positioned among the broad anatomic footprints.

Purpose / Hypothesis

To find a clinically ideal combination of anatomic ACL tunnel positions.


AM positioned tunnels would have better clinical scores, knee joint stability, and graft signal intensity on follow-up MRI than those with PL positioned tunnels.

Patient Selection and Study Design

AA: tibial & femoral tunnels near AM AP: tibial tunnel near AM, femoral tunnel near PL PA: tibial tunnel near PL, femoral tunnel near AM PP: tibial & femoral tunnels near PL

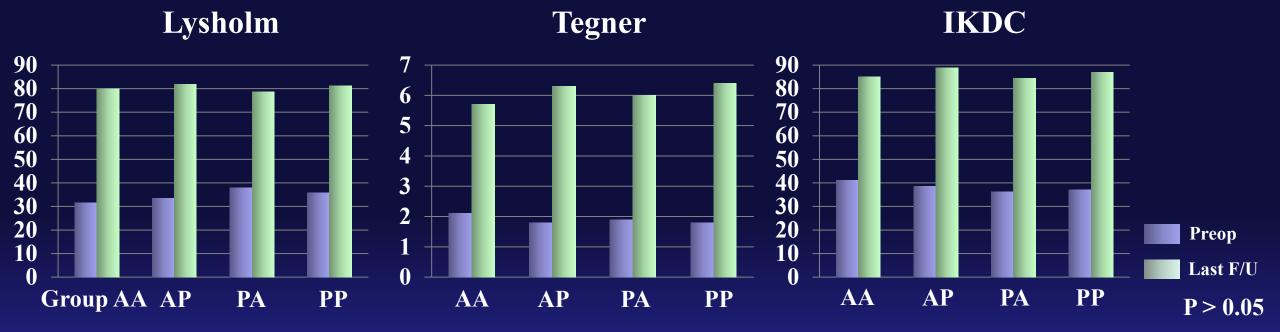
AM and PL Tunnel Positions

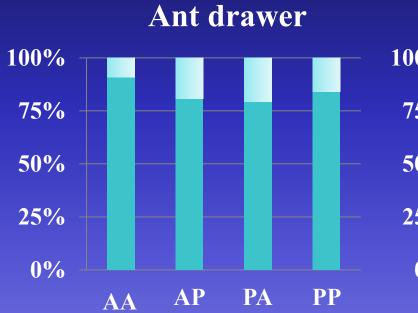
Evaluation

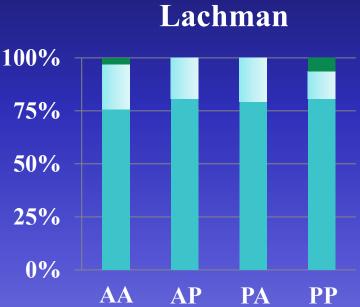
Clinical scores

Lysholm, Tegner activity, and International Knee Documentation
Committee (IKDC) subjective score

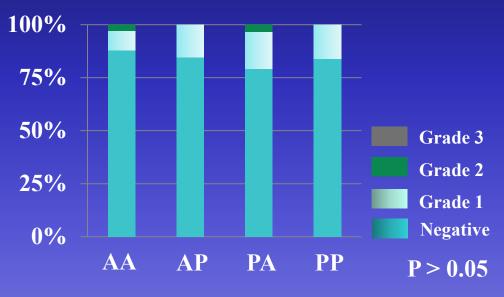
Stability function tests

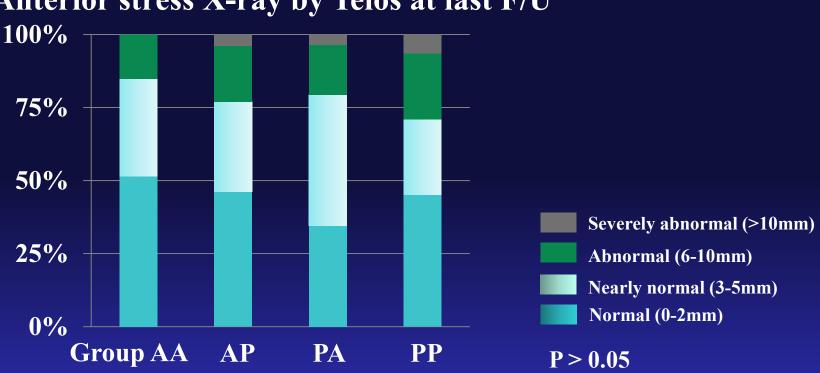

- Anterior drawer, Lachman test, Pivot-shift test, and Side-to-side difference (STSD) in anterior tibial translation on Telos stress


MRI evaluation


- MRI signal intensity measurement of the intra-articular region of reconstructed ACL were performed on T2-weighted imagines at 1-year follow-up.

Demographics


	AA	AP	PA	PP	P Value
Age, y	29.7 ± 12.6	29.9 ± 11.9	28.3 ± 10.8	27.1 ± 10.4	.411°
Sex					$.609^{d}$
Male	28	22	24	29	
Female	5	4	5	2	
Injury side					$.670^{d}$
Right	17	17	15	16	
Left	16	9	14	15	
Follow-up, mo	33.1 ± 12.8	39.2 ± 16.6	40.3 ± 13.8	34.2 ± 9.8	$.057^{\circ}$
Score					
Lysholm	31.5 ± 21.9	33.5 ± 23.6	38.0 ± 18.4	35.8 ± 23.9	.569
Tegner	2.1 ± 1.2	1.8 ± 1.2	1.9 ± 1.1	1.8 ± 1.5	.659°
IKDC	41.1 ± 15.2	38.6 ± 13.2	36.2 ± 14.2	37.1 ± 14.2	.555°
Test, grade 0/1/2/3					
Anterior draw	2/12/18/0	2/7/16/1	1/7/20/1	0/10/19/2	$.764^{d}$
Lachman	1/11/19/1	1/6/17/2	0/9/17/3	2/5/20/4	$.695^{d}$
Pivot shift	0/14/18/1	1/10/12/3	1/9/16/3	1/6/20/4	$.505^{d}$



Pivot shift

Anterior stress X-ray by Telos at last F/U

MRI signal intensity

MRI signal intensity	Group AA	Group AP	Group PA	Group PP	
Low	16	8	18	12	
Intermediate	11	10	8	14	
High	6	8	3	5	P >

> 0.05

Limitations

Retrospective study

Small sample size

→ Many femoral tunnels were located near the central position, but we could not categorize them into an additional group

Remnant-preservation technique was not considered → Femoral tunnel to a rather PL position

Conclusion

No significant differences in clinical scores, knee joint stability, or graft signal intensity on follow-up MRI were identified between the patients with anteromedially and posterolaterally positioned tunnels.

Reference

- 1. Iriuchishima T, Tajima G, Ingham SJ, et al. Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model. Knee Surg Sports Traumatol Arthrosc. 2009;17(6):590-594.
- 2. Kondo E, Merican AM, Yasuda K, Amis AA. Biomechanical comparison of anatomic double-bundle, anatomic single-bundle, and nonanatomic single-bundle anterior cruciate ligament reconstructions. Am J Sports Med. 2011;39(2):279-288.
- Parkinson B, Robb C, Thomas M, Thompson P, Spalding T. Factors that predict failure in anatomic single-bundle anterior cruciate ligament reconstruction. Am J Sports Med. 2017;45(7):1529-1536.
- 4. Robinson J, Inderhaug E, Harlem T, Spalding T, Brown CH Jr. Anterior cruciate ligament femoral tunnel placement: an analysis of the intended versus achieved position for 221 international high-volume ACL surgeons. Am J Sports Med. 2020;48(5):1088-1099.
- 5. Vermeijden HD, Yang XA, van der List JP, et al. Trauma and femoral tunnel position are the most common failure modes of anterior cruciate ligament reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2020;28(11):3666-3675.
- 6. Seo SS, Kim CW, Lee CR, et al. Effect of femoral tunnel position on stability and clinical outcomes after single-bundle anterior cruciate ligament reconstruction using the outside-in technique. Arthroscopy. 2019;35(6):1648-1655.
- 7. Kanamiya T, Hara M, Naito M. Magnetic resonance evaluation of remodeling process in patellar tendon graft. Clin Orthop Relat Res. 2004;(419):202-206.