Identifying Anterior Cruciate Ligament Injuries through Automated Video Analysis of In-Game Motion Patterns

Authors

Attila Schulc¹, Chilan B. G, Leite M.D.^{3,4}, Mate Csakvari¹, Luke Lattermann³, Molly F. Zgoda³, Evan M. Farina M.D.³, Christian Lattermann M.D.³, Zoltan Toser², Gergo Merkely M.D.³

Affiliations

¹ Argus Cognitive Hungary Kft., Budapest, Hungary

² Argus Cognitive, Inc., Lebanon, NH, United States

³ Dept. Orthopaedic Surgery, Division of Sports Medicine, Center for Cartilage Repair, Brigham and Women's

Hospital, Harvard Medical School, Boston, MA, USA

⁴ Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR

Conflict of interest

Zoltán Toser is the CEO of Argus Cognitive, Inc. (Lebanon, NH, United States) with an ownership stake.

Attila Schulc is a paid employee of Argus Cognitive Hungary Kft. (Subsidiary of Argus Cognitive, Inc. in Budapest, Hungary)

Mate Csakvari is a paid employee of Argus Cognitive Hungary Kft. (Subsidiary of Argus Cognitive, Inc. in Budapest, Hungary)

Introduction

Long-term objectives

- Identify trends and changes in athletes motion
- Prevention

Short-term objectives

- Identify biomechanical patterns associated with ACL injuries;
- Present data as information for doctors;
- Evaluate the efficacy of using this data for early diagnosis;
- Automatic injury recognition.

Data workflow

Video dataset

Annotation tool

-Right Ground Contact- -Left Ground Contact-

-ACL

Model building

Model performance

Overall

Differences within subgroups

Experiment with experts

Scenario	Precision	Recall	F1	ΤN	FP	FN	TP
Expert A	0.615	0.364	0.457	22	5	14	8
Expert A + Visualization	0.611	0.500	0.550	20	7	11	11
Expert B	0.680	0.708	0.694	17	8	7	17
Expert B + Visualization	0.895	0.708	0.791	23	2	7	17

Ζ

Х

Y

Ζ

Conclusions

- ACL injury dataset built from in-game video footage.
- Deep learning algorithms are successful in reconstructing 3D poses from single camera view.
- Geometrical features are effective in modeling ACL injuries.
- Automated analysis of biomechanical pathological patterns associated with ACL injuries.
- Pilot study with orthopaedic surgeons shows improved diagnostic ability when watching real game situations.
- Long-term goal: injury prevention via early detection of at-risk motion patterns.

Contacts

gmerkely@bwh.harvard.edu

attila.schulc@arguscognitive.com

References

- 1. Sárándi I, Linder T, Arras KO, Leibe B. MeTRAbs: Metric-Scale Truncation-Robust Heatmaps for Absolute 3D Human Pose Estimation. *IEEE Transactions on Biometrics, Behavior, and Identity Science*. 2021;3(1):16-30.
- 2. Zhang Y, Sun P, Jiang Y, et al. Bytetrack: Multi-object tracking by associating every detection box. *European Conference on Computer Vision*. 2022:1-21.