Large posterolateral cartilage slope is a risk factor for non-contact ACL injury

Kensuke Hotta, Mitsuru Hanada, Kazuki Nomoto, Yukihiro Matsuyama

Department of Orthopaedic Surgery, Hamamatsu University School of Medicine

COI Disclosure Information

Lead Presenter/Responsible Researcher:

Kensuke Hotta

I have no financial relationships to disclose.

Background

Increased posterior tibial slope (PTS)

anterior translation of the tibia

Increased risk of ACL injury

Song et al. AJSM 2018¹⁾ Zeng et al. KSSTA 2014²⁾

Which is the risk factor?

- bone, meniscus, or cartilage?
- medial or lateral?

Purpose

The purpose of this study is to investigate the relationship between non-contact ACL injury and the morphology of the proximal tibial articular surface.

PTS: the tangent line to the bony articular surface MS: connecting the superior aspects of the anterior and posterior segments of the meniscus

CS: connecting the anterior and posterior borders of the inferior aspect of the posterior segment of the meniscus

Patient selection

[Inclusion criteria]

- Patients who have undergone knee MR imaging due to knee pain between 2015 and 2020.
- Age between 16 and 39 years old.

[Exclusion criteria]

- Presence of osteoarthritis.
- Cases with difficult measurements due to meniscal injury.
- With a history of knee surgery.

50 patients with ACL injury (ACL group)**50** patients without ACL injury (Control group)

Methods

The definitions of three planes (Fig.1)

- Central: midpoint of the intercondylar eminence
- Medial: midpoint of the medial tibial plateau
- Lateral: midpoint of the lateral tibial plateau

The definitions of the tibial axis (TA) and the reference line (R) are shown in Fig.2.

Hashemi et al. AJSM 2010³⁾

Parameters

The following six parameters were measured as the posterior tilt angle with respect to line R. Statistical analysis involved the use of a t-test or chi-squared test for comparisons between two groups, and binary logistic regression analysis for multivariate analysis.

Medial plane

PTS, posterior tibial slope MS, meniscus slope CS, cartilage slope m, medial; l, lateral al, anterolateral pl, posterolateral

Results

ACL vs Control:

IPTS, IMS, and pICS were significantly larger in the ACL group. (Table 1)

Risk factor:

plCS was identified as an independent risk factor for ACL injury. (Table 2)

Table 1. Comparison of ACL group and Control group

	ACL	Control	p
n	50	50	
age	23.8	26.4	0.09
M/F	29/21	29/21	
mPTS	7.9 ± 3.4	8.7±3.4	0.25
mMS	5.5 ± 3.6	4.8±3.3	0.37
IPTS	8.3±4.5	6.5 ± 3.6	0.03
IMS	4.1 ± 5.0	1.7 ± 3.5	0.007
alCS	-11.8 ± 7.6	-12.1±7.3	0.85
plCS	22.0 ± 7.1	16.6 ± 7.3	<0.001

Table 2. Multivariate logistic regression analysis of risk factors for ACL injury

	OR	95%CI	р
plCS	1.112	1.043-1.185	0.001

Discussion

Previous studies:

• Lateral PTS was associated with an increased risk of ACL tear.

Bojicic et al. OJSM 2017⁴⁾

• Both PTS and MS were greater in ACL injured group than controls. Hudek et al. CORR 2011 ⁵⁾

Present study:

- IPTS, IMS, and pICS were all larger in ACL group than in control group.
- **pICS** was identified as a risk factor for non-contact ACL injury.

Discussion

Bordoni et al. AJSM 2019⁶⁾

The most common relative bone bruise pattern was observed on only the **lateral side of both the tibia and the femur**. Shi et al. OJSM 2019⁷

Increased LMS was associated with and could be an independent risk factor for lateral **bone bruise** in *Li et al. KSSTA 2018*⁸⁾

"The significant posterior tilt of the lateral parameters may lead to ACL injury and subsequent bone contusions in the lateral compartment."

Limitations

- Small sample size
- Insufficient patient information, such as height, weight and BMI
- Exclusion of cases with difficult measurements due to meniscal injury.

Conclusion

- IPTS, IMS, and pICS were significantly larger in patients with ACL injury.
- Large posterolateral cartilage slope is a risk factor for non-contact ACL injury.

References

- 1) Song GY et al. Greater Static Anterior Tibial Subluxation of the Lateral Compartment After an Acute Anterior Cruciate Ligament Injury Is Associated With an Increased Posterior Tibial Slope. Am J Sports Med. 2018 Jun;46(7):1617-1623
- 2) Zeng C et al. Is posterior tibial slope associated with noncontact anterior cruciate ligament injury? Knee Surg Sports Traumatol Arthrosc. 2016 Mar;24(3):830-7
- 3) Hashemi J et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010 Jan;38(1):54-62
- 4) Bojicic KM et al. Association Between Lateral Posterior Tibial Slope, Body Mass Index, and ACL Injury Risk. Orthop J Sports Med. 2017 Feb 13;5(2)
- 5) Hudek R et al. Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res. 2011 Aug;469(8):2377-84
- 6) Bordoni V et al. Bone Bruise and Anterior Cruciate Ligament Tears: Presence, Distribution Pattern, and Associated Lesions in the Pediatric Population. Am J Sports Med. 2019 Nov;47(13):3181-3186
- 7) Shi H et al. Bone Bruise Distribution Patterns After Acute Anterior Cruciate Ligament Ruptures: Implications for the Injury Mechanism. Orthop J Sports Med. 2020 Apr 15;8(4)
- 8) Li K et al. Increased lateral meniscal slope is associated with greater incidence of lateral bone contusions in noncontact ACL injury. Knee Surg Sports Traumatol Arthrosc. 2020 Jun;28(6):2000-2008