

Department of Orthopedic Surgery

Favorable Outcomes Following Extracorporeal Shockwave Therapy for Chronic Non-Insertional Achilles Tendinopathy compared to Insertional Achilles Tendinopathy: A Retrospective Review

James J Butler, MB BCh, Mohammad T Azam, BS, Brittany DeClouette, MD, Cian Walls, George Jejelava, Danny Zheng, MD, John G. Kennedy, MD, FRCS,

Disclosures

- The senior author is a consultant for Arteriocyte, Arthrex and In2Bones
- The senior author receives financial support from the Ohnell Family Foundation

Background

- Achilles tendinopathy (AT) is a common musculoskeletal injury, and accounts for up to 18% of all injuries in runners¹.
- Given the limitations of conservative management, other non-invasive modalities have gained interest.
- ESWT is a non-invasive treatment modality that is often indicated following failure of first line treatment modalities for AT². ESWT produces focused longitudinal sound waves which create a biological cascade via mechanotransduction, inducing local neovascularization, cell proliferation, calcific resorption, downregulation of metalloproteinases and inhibition of substance P^{3,4}.
- Many of these studies are limited by follow-up times of less than 6 months together with small patient cohorts¹⁵.

Purpose

The purpose of this retrospective review was to evaluate clinical outcomes following ESWT for AT at a minimum of 1 year follow-up. Furthermore, the current study subdivided IAT and NAT with regards to outcomes and predictors of success of treatment over one year. We hypothesize ESWT will lead to improved clinical outcomes in patients with AT.

Methods

Methods

- A retrospective study using chart review was carried out
- 112 patients from 2017 to 2021
- Patients were divided into insertional Achilles tendinopathy (IAT) and non-insertional Achilles tendinopathy (NAT)
- Subjective clinical outcomes of patients were evaluated via VISA-A and VAS scores
- Complications and failure rates were also recorded
- Linear and logistic regression analysis was conducted to assess for potential predictors of clinical outcomes
- Survival analysis via Kaplan Meier curves was performed

Results

Patient Demographics

- 86 patients
- Mean age NAT: 54.2 ± 15.0 years old
- Mean age IAT: 53.0 ± 14.4 years old
- Mean follow-up NAT: 22.3 ± 10.2 months
- Mean follow-up IAT: 26.8 ± 15.8 months
- MRI Severity NAT: G1 (n=23), G2 (n=6), G3 (n=5)
- MRI Severity IAT: G1 (n=17), G2 (n=14), G3 (n=21)

	Non-insertional Insertional Achil			
	Achilles Tendinopathy	Tendinopathy		
Number of patients (n)	34	52		
Mean age (years)	54.2 ± 15.0	53.0 ± 14.4		
Sex (M/F)	23M/11F	33M/19F		
Mean follow-up (months)	22.3 ± 10.2	26.8 ± 15.8		
Mean BMI (kg/m ²)	25.9 ± 5.3	27.7 ± 4.4		
Mean duration of symptoms (months)	12.5 ± 14.3	17.9 ± 15.1		
Unilateral (R/L)	30 (17R/13L)	37 (21R/16L)		
Bilateral	4	15		
Cardiovascular risk factor (n)	13	23		
Corticosteroid injection	1	7		
MRI Grade 1	23	17		
MRI Grade 2	6	14		
MRI Grade 3	5	21		
Haglund's deformity	n/a	20		
Retrocalcaneal bursitis	n/a	11		

Improvement in Clinical Outcomes at Final Follow-Up

- Improvement in VISA-A and VAS scores at final follow-up in both cohorts
- Superior VISA-A and VAS scores at final follow-up in NAT cohort
- Higher failure rate in IAT cohort

Fable 2. Summary	of	Clinical	Outcomes
------------------	----	----------	----------

	Non-insertional	Insertional Achilles		
	Achilles Tendinopathy	Tendinopathy	Significance	
Pre-ESWT VISA-A	49.6 ± 14.9	46.6 ± 14.9	<i>P</i> = .4831	
Post-ESWT VISA-A at 6	762+216	63.9 ± 23.2	P = 014	
months follow-up	10.2 ± 21.0	05.7 ± 25.2	1 1011	
Post-ESWT VISA-A at	74 7 1 22 2	547 2 265	R = -0.01	
final follow-up	74.7 ± 23.3	54.7 ± 26.5	P = .001	
Pre-ESWT VAS	5.9 ± 1.6	6.1 ± 1.5	<i>P</i> = .5913	
Post-ESWT VAS at 6	24+23	38 + 31	P = 0.143	
months follow-up	2.4 ± 2.5	5.6 ± 5.1	10145	
Post-ESWT VAS at final	28+25	49 + 29	P = 0.009	
follow-up	2.0 = 2.5	1.9 = 2.9	1 10005	
Failures at 6 month	4 (11 89/)	17 (22 79/)	B = 0.201	
follow-up (%)	4 (11.8%)	17 (32.7%)	r0391	
Failures at final follow-	10 (29.4%)	31 (59.6%)	P = 0.081	
up (%)	10 (29.470)	51 (59.070)	70001	

ESWT = extracorporeal shockwave therapy; VISA-A = Victorian Institute of Sports Assessment-

Achilles; VAS = visual analog scale

Predictors of Clinical Outcomes

- Predictors of outcomes for NAT:
 - Pre-ESWT subjective clinical outcomes score
 - Male
 - Cardiovascular RF
 - Increasing MRI severity
- Predictors of outcomes for IAT:
 - Pre-ESWT subjective clinical outcomes score
 - Increasing MRI severity

	Post-ESWT VISA-A score	Post-ESWT VAS	Failure
Pre-ESWT VISA-A score	R ² = 0.4105	n/a	n/a
	P < .0001		
Pre-ESWT VAS score	n/a	$R^2 = 0.09701$	n/a
		P=.0246	
Age	$R^2 = 0.04075$	R ² = 0.02119	$R^2 = 0.03414$
	P=.1512	P = .3032	P = .1897
Male sex	$R^2 = 0.06124$	$R^2 = 0.04389$	$R^2 = 0.04733$
	P = .0769	P = .136	P=.1213
BMI	$R^2 = 0.00045$	$R^2 = 0.000152$	$R^2 = 0.01178$
	P = .8875	P = .9344	P=.4678
Smoking	$R^2 = 0.009698$	$R^2 = 0.008775$	$R^2 = 0.004608$
	P = .4873	P = .5089	P=.6325
Cardiovascular risk factor	$R^2 = 0.02237$	$R^2 = 0.001194$	$R^2 = 0.01034$
	P = .2899	P = .8079	P = 04732
Corticosteroid injection	$R^2 = 0.000631$	$R^2 = 0.000002$	R ² = 0.000395
	P = .8597	P = .9914	P = .8888
MRI grading o	$f R^2 = 0.4599$	$R^2 = 0.4278$	$R^2 = 0.5825$
tendinopathy	P < .0001	P < .0001	P < .0001

	Post-ESWT VISA-A score	Post-ESWT VAS	Failure
Pre-ESWT VISA-A score	R ² = 0.2926	n/a	n/a
	P = .0008		
Pre-ESWT VAS score	n/a	$R^2 = 0.1952$	n/a
		P = .0075	
Age	$R^2 = 0.05911$	$R^2 = 0.08766$	$R^2 = 0.004114$
	P = .1593	P = .0842	P=.7143
Male sex	$R^2 = 0.138$	$R^2 = 0.06484$	$R^2 = 0.2045$
	P = .028	P = .1399	P = .0064
BMI	$R^2 = 0.02264$	$R^2 = 0.03056$	$R^2 = 0.02045$
	P = .4631	P = .3931	P=.4859
Smoking	$R^2 = 0.03766$	$R^2 = 0.09701$	$R^2 = 0.000139$
	P = .264	P = .0686	P = .9463
Cardiovascular risk factor	$R^2 = 0.1855$	$R^2 = 0.2287$	$R^2 = 0.05027$
	P = .0098	P = .0037	P = .1954
Corticosteroid injection	$R^2 = 0.005704$	$R^2 = 0.003227$	$R^2 = 0.01018$
	P = .6663	P = .7458	P=.5641
Increasing MRI grading of	$R^2 = 0.354$	$R^2 = 0.29$	$R^2 = 0.0935$
tendinopathy	<i>P</i> = .0002	P = .0008	P = .074

ESWT = extracorporeal shockwave therapy; VISA-A = Victorian Institute of Sports Assessment-Achilles

VAS = visual analog scale; BMI = body mass index; MRI = magnetic resonance imaging; $R^2 =$ square of correlation coefficient

Superior Survival in the NAT cohort vs IAT cohort

Survival of NAT vs IAT

Limitations

- Short term f/u
- No imaging at final f/u
- No control group
- Retrospective nature of review

- This study found that ESWT for patients with both NAT and IAT led to improved subjective clinical outcomes at short-term follow-up.
- Superior subjective clinical outcomes together with a lower failure rate was maintained over 1 year in the NAT cohort compared to the IAT cohort.
- Therefore, ESWT may be more beneficial in the long term treatment of NAT whereas it may be considered a temporising treatment for IAT.
- These findings will help in establishing treatment protocols as well as patient expectations for patients with chronic AT.

References

- 1. Abdelkader NA, Helmy MNK, Fayaz NA, Saweeres ESB. Short- and Intermediate-Term Results of Extracorporeal Shockwave Therapy for Noninsertional Achilles Tendinopathy. *Foot Ankle Int*. 2021;42(6):788-797.
- 2. Longo UG, Ronga M, Maffulli N. Achilles Tendinopathy. *Sports Med Arthrosc Rev.* 2018;26(1):16-30.
- 3. d'Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. *Int J Surg.* 2015;24(Pt B):147-153.
- 4. Wang CJ. An overview of shock wave therapy in musculoskeletal disorders. *Chang Gung Med J.* 2003;26(4):220-232.
- 5. Stania M, Juras G, Chmielewska D, Polak A, Kucio C, Król P. Extracorporeal Shock Wave Therapy for Achilles Tendinopathy. *Biomed Res Int*. 2019;2019:3086910

/ULangone

Thank You