## DAIR vs Revision for TKA PJI

#### **Results from the PIANO Cohort**

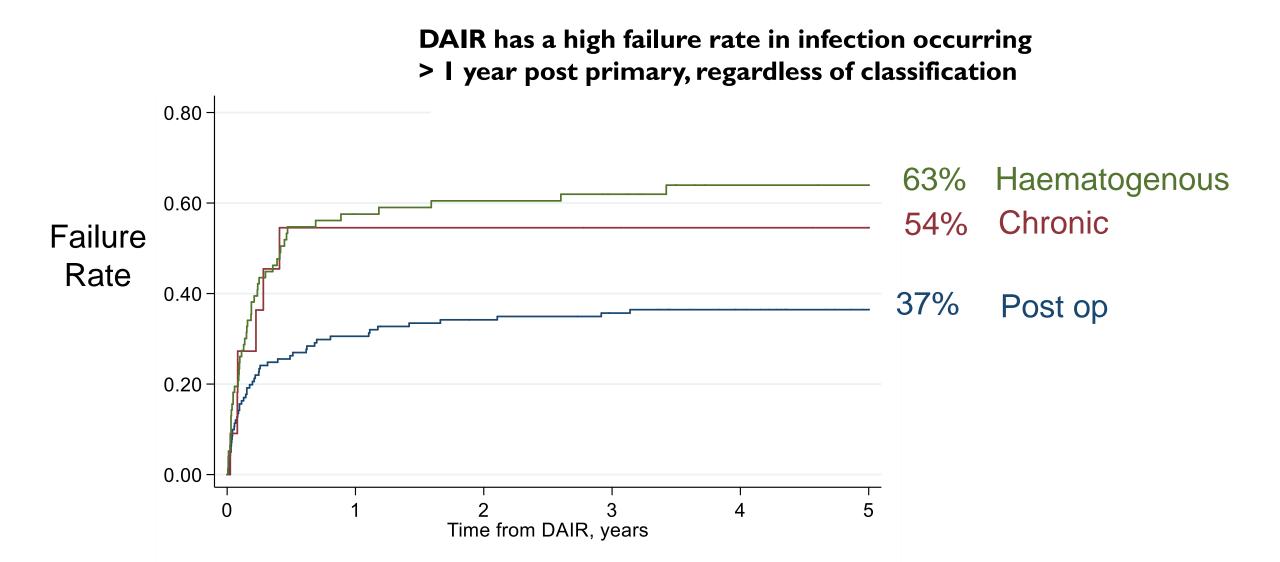
#### Mark Zhu

#### Richard Rahardja, Joshua Davis, Laurens Manning, Sarah Metcalf,

Simon W. Young



University of Auckland / North Shore Hospital Auckland, New Zealand




## Disclosure

Simon Young Editorial Board – Saunders/Mosby-Elsevier Research Support – Smith & Nephew Consultant/Research Support – Stryker Stock – Surgical Solutions

**Other Authors - None** 

Success Rates of Debridement, Antibiotics, and Implant Retention in 230 Infected Total Knee Arthroplasties: Implications for Classification of Periprosthetic Joint Infection JOA 2022



# Surgical decision DAIR or Revision?

Early PJI < 1yr

Late PJI > 1yr

Requires comparison of DAIR vs Revision for both early and late PJIs



Darwin

Perth

# Compare efficacy of DAIR vs Revision for early and late PJIs

Identify Factors Predictive of Failure

Victoria

#### USING the PIANO prospective cohort

Adelaide

2014-2017, Australia and NZ centres

# Strict Failure Criteria

Death

Reoperation

**Clinical** or **Microbiological** Evidence of Infection Suppressive Antibiotics

### Early < 1yr n = 117 Similar demographic and disease factors

|                   | DAIR | Revision | P-Value |
|-------------------|------|----------|---------|
| Male              | 56%  | 63%      | 0.56    |
| Age ≥70           | 45%  | 38%      | 0.50    |
| Symptoms <21d     | 88%  | 46%      | <0.001  |
| BMI ≥35           | 33%  | 17%      | 0.14    |
| Sig comorbidities | 47%  | 29%      | 0.11    |
| CRP≥65            | 75%  | 71%      | 0.36    |
| Polymicrobial     | 24%  | 21%      | 0.92    |
| Staph aureus      | 57%  | 38%      | 0.10    |
| Gram negative     | 16%  | 25%      | 0.31    |

Early < 1yrn = 117

 DAIR
 Revision

 n = 93
 Success
 n = 24

 @ 2 yrs
 57%
 54%

 P=0.878
 54%

No significant predictors of Failure DAIR similar to Revision

#### Late > 1yr n = 134

#### **DAIR** patients – more acute presentation

|                   | DAIR | Revision | P-Value |
|-------------------|------|----------|---------|
| Male              | 60%  | 47%      | 0.2     |
| Age ≥70           | 40%  | 53%      | 0.8     |
| Symptoms <21d     | 92%  | 42%      | 0.001   |
| BMI ≥35           | 25%  | 32%      | 0.3     |
| Sig comorbidities | 60%  | 61%      | 0.8     |
| CRP≥65            | 88%  | 63%      | 0.001   |
| Polymicrobial     | 10%  | 21%      | 0.1     |
| Staph aureus      | 42%  | 24%      | 0.1     |

## Late > 1yr n = 134

**DAIR** n = 96 Revision n = 38

34%

Success @ 2yrs



**P=0.006** 

Late > 1yrn = 134

|                    |              | Odds of Failure        | P Value |
|--------------------|--------------|------------------------|---------|
| Management Strateg | ду           |                        |         |
|                    | Revision     | Reference              |         |
|                    | DAIR         | <b>2.7</b> (1.2 – 7.1) | 0.040   |
| Sig. comorbidity   |              |                        |         |
|                    | 1 or more    | <b>3.4</b> (1.4-8.2)   | 0.006   |
|                    | No           | Reference              |         |
| Staph aureus       |              |                        |         |
|                    | Staph aureus | <b>3.0</b> (1.1-7.9)   | 0.028   |
|                    | No           | Reference              |         |

## **Conclusion – DAIR**

### DAIR < 1 year

## **Revision > 1 year**

#### Staph + comorb – high risk for failure

# References

Koh CK, Zeng I, Ravi S, Zhu M, Vince KG, Young SW. Periprosthetic Joint Infection Is the Main Cause of Failure for Modern Knee Arthroplasty: An Analysis of 11,134 Knees. Clin Orthop Relat Res 2017;475:2194–201.

Qasim SN, Swann A, Ashford R. The DAIR (debridement, antibiotics and implant retention) procedure for infected total knee replacement – a literature review. SICOT J 2017;3.

Lora-Tamayo J, Mancheño-Losa M, Lumbreras C. To DAIR or not to DAIR: Decision-making in the management of acute prosthetic joint infection-A narrative review Clinical case. Span J Med 2021;1:119–31.

Zhu MF, Kim K, Cavadino A, Coleman B, Munro JT, Young SW. Success Rates of Debridement, Antibiotics, and Implant Retention in 230 Infected Total Knee Arthroplasties: Implications for Classification of Periprosthetic Joint Infection. J Arthroplasty 2021;36:305-310.e1.

Wouthuyzen-Bakker M, Sebillotte M, Lomas J, Taylor A, Palomares EB, Murillo O, et al. Clinical outcome and risk factors for failure in late acute prosthetic joint infections treated with debridement and implant retention. Journal of Infection 2019;78:40–7.

Manning L, Metcalf S, Clark B, Robinson JO, Huggan P, Luey C, et al. Clinical Characteristics, Etiology, and Initial Management Strategy of Newly Diagnosed Periprosthetic Joint Infection: A Multicenter, Prospective Observational Cohort Study of 783 Patients. Open Forum Infect Dis 2020;7.

Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, et al. Executive summary: diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2013;56:1–10. https://doi.org/10.1093/CID/CIS966.

Ashley BS, Parvizi J. Current Insights in the Evaluation and Treatment of Infected Total Knee Arthroplasty. Journal of Knee Surgery 2021;34:1388–95.

Urish KL, Bullock AG, Kreger AM, Shah NB, Jeong K, Rothenberger SD, et al. A Multicenter Study of Irrigation and Debridement in Total Knee Arthroplasty Periprosthetic Joint Infection: Treatment Failure Is High. J Arthroplasty 2018;33:1154–9. https://doi.org/10.1016/J.ARTH.2017.11.029.

Klemt C, Tirumala V, Smith EJ, Padmanabha A, Kwon YM. Development of a Preoperative Risk Calculator for Reinfection Following Revision Surgery for Periprosthetic Joint Infection. J Arthroplasty 2021;36:693–9. https://doi.org/10.1016/J.ARTH.2020.08.004.

Tigani D, Trisolino G, Fosco M, ben Ayad R, Costigliola P. Two-stage reimplantation for periprosthetic knee infection: Influence of host health status and infecting microorganism. Knee 2013;20:9–18.

Mortazavi SMJ, Vegari D, Ho A, Zmistowski B, Parvizi J. Two-stage exchange arthroplasty for infected total knee arthroplasty: Predictors of failure. Clin Orthop Relat Res 2011;469:3049–54. https://doi.org/10.1007/S11999-011-2030-8.

Romanò CL, Gala L, Logoluso N, Romanò D, Drago L. Two-stage revision of septic knee prosthesis with articulating knee spacers yields better infection eradication rate than one-stage or two-stage revision with static spacers. Knee Surgery, Sports Traumatology, Arthroscopy 2012;20:2445–53.

Pelt CE, Grijalva R, Anderson L, Anderson MB, Erickson J, Peters CL. Two-stage revision TKA is associated with high complication and failure rates. Adv Orthop 2014;2014. https://doi.org/10.1155/2014/659047.