

Do Concomitant Chondral Procedures Impact Patient Outcomes Following Arthroscopic Treatment of Femoroacetabular Impingement in Patients with Large Cartilage Lesions?

Jie Ma, MES; Ivan Wong, MD, MACM, FRCSC

Disclosures

Ms. Jie Ma:

- Nothing to disclose.

Dr. Ivan Wong:

Speakers Bureau

- Smith and Nephew, DePuy Synthes Mitek Sports Medicine, Linvatec, Bioventus

Research Support

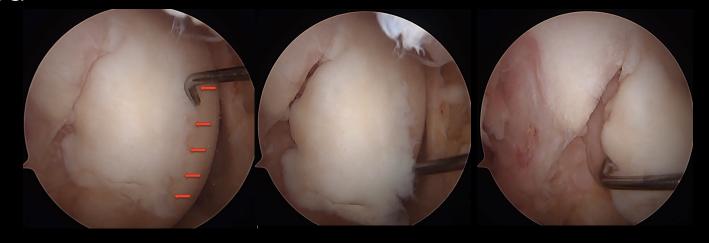
- Smith and Nephew, Arthrex, Aesculap, Linvatec

Editorial Board

- AJSM, ARTH

Organizations

- Research Chair AANA, Shoulder Committee ISAKOS, President AAC



Acetabular Cartilage Defects (ACD) Are Commonly Found in Patients Treated with Hip Arthroscopy

ACDs:

- Are caused by Femoroacetabular Impingement (FAI) due to the repetitive abnormal contact between acetabulum and/or femoral head¹
- Cause pain and functional limitations^{2,3}
- May result in a high probability of osteoarthritis (OA) progression and the need for a THA due to limited capacity to self-repair if left untreated²⁻⁴

The Management of ACDs Remains A Challenge

Treatment Options:

- Microfracture (MF)
 - Gold standard for small chondral lesions (1-2 cm²)^{5,6}
 - Bone marrow stimulation technique that initiates a repair process
 - Drawbacks may limit the clinical benefits^{7,8}
 - Long-term results seem to be less attractive⁸
- BST-CarGel (CG)
 - Injectable chitosan-based scaffold
 - was designed for use in combination with bone marrow stimulation techniques (e.g., MF) as it stabilizes resulting blood clots^{9,10}
 - has better results than MF^{9,11-13}

The Impact of Concomitant Procedures on Patient Outcomes Is Still Unknown

- Surgical treatment of chondral lesions in the hip usually includes other concomitant procedures (e.g., hip arthroscopy for FAI)
 - These concomitant procedures = confounding factors in postoperative data analysis
 - > This makes the clinical benefits and outcomes difficult to interpret
- In the literature, there is a knowledge gap in comparing the outcomes of chondral and non-chondral patients

Purpose

 To compare the clinical outcomes of patients who received treatment for FAI with no chondral procedures to those that received concomitant treatment for cartilage lesions.

Patient Selection

Initial Inclusion

Patients who underwent hip arthroscopy between 2012 and 2019 (n=1017)

Exclusion Criteria

Abductor repair; HO resection; subchondral cyst; <5yr follow-up; (n=34) Patient Matching with 1:1 ratio

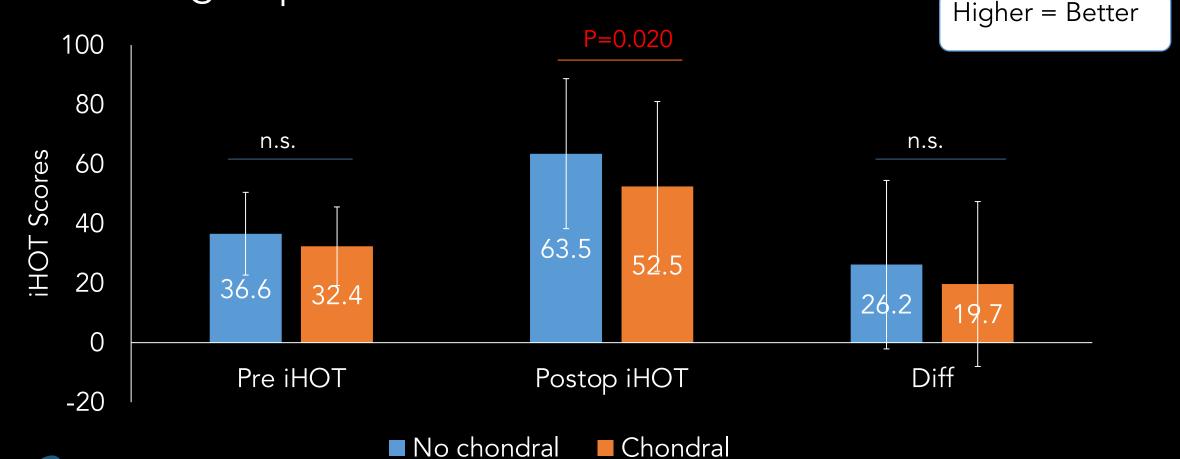
Age ± 5 years, BMI ± 5.5 kg/m2, and clinical follow-up ± 2 year Finally Included in Analysis

Chondral: n=80

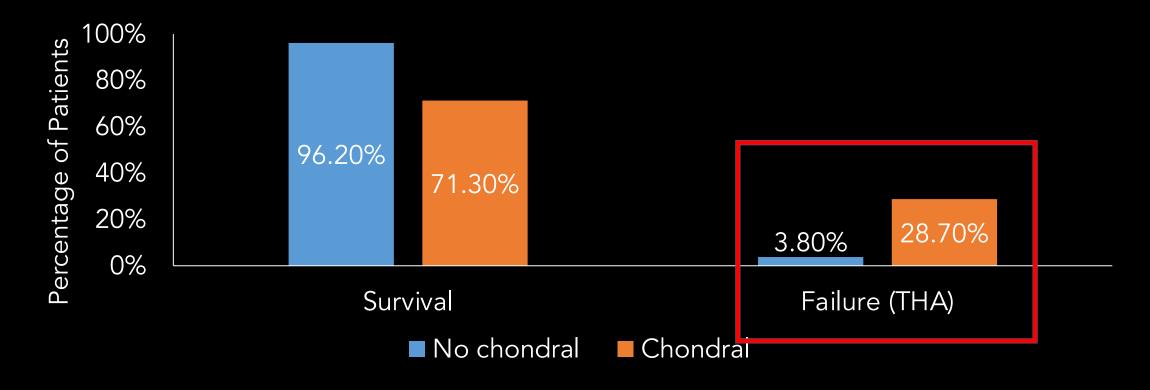
(31 MF and 49 CG)

Control: n=80

Demographics

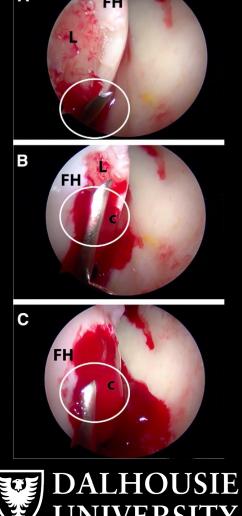

Variables	No chondral procedures (N=80)	Chondral procedures (N=80)	P values
Age at Surgery, years	38.1±10.7	38.4±10.2	0.829
BMI, kg/m²	26.6±4.3	26.7±4.6	0.896
Clinical follow-up, years	6.7±1.2	6.5±0.8	0.105
Revision, n (%)	4 (5.0%)	5 (6.3%)	1.000
Male, n (%)	56 (70%)	56 (70%)	1.000

Both groups improved following surgery, however the post-operative scores were significantly lower in the chondral group



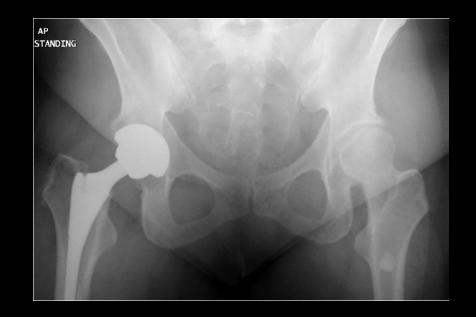
Chondral group had higher conversion to THA than the control group (p<0.001)

• MF made up most of the failure cases



If Left Untreated, Cartilage Lesion May be Risk Factor for THA

- The significant improvements in patient-reported outcome (PRO) scores from preop to postop in control and CG groups have also been demonstrated in other studies^{13,14}
- The conversion to THA in the control group (3.8%) is in the range of those reported in the literature¹⁵
- MF patients had the highest conversion rate to THA
 - Can probably be explained by the differences in cartilage quality.
 - Microfracture leads to unstable clots and creation of fibrotic tissue^{4,15}
 - CarGel biopsies show better cell viability and distribution¹⁵
 - Post-operative cartilage quality: CG > MF^{4,15}
 - Worse post-operative cartilage quality = larger unsuccessfully addressed chondral lesions = decreased joint space and higher likelihood of THA¹⁶



Summary

 Patients with concomitant chondral procedures have higher rates of THR post-operatively compared to patients without that had treatment for FAI.

References

- 1. Buckwalter JA. Articular Cartilage: Injuries and Potential for Healing. Journal of Orthopaedic & Sports Physical Therapy. 1998;28(4):192-202. doi:10.2519/jospt.1998.28.4.192
- 2. Sampson TG. Arthroscopic Treatment for Chondral Lesions of the Hip. Clinics in Sports Medicine. 2011;30(2):331-348. doi:10.1016/j.csm.2010.12.012
- 3. Klennert BJ, Ellis BJ, Maak TG, Kapron AL, Weiss JA. The mechanics of focal chondral defects in the hip. Journal of Biomechanics. 2017;52:31-37. doi:10.1016/j.jbiomech.2016.11.056
- 4. Karthikeyan S, Roberts S, Griffin D. Microfracture for acetabular chondral defects in patients with femoroacetabular impingement: Results at second-look arthroscopic surgery. American Journal of Sports Medicine. 2012;40(12):2725- 2730. doi:10.1177/0363546512465400
- 5. MacDonald AE, Bedi A, Horner NS, et al. Indications and outcomes for microfracture as an adjunct to hip arthroscopy for treatment of chondral defects in patients with femoroacetabular impingement: A systematic review. Arthroscopy Journal of Arthroscopic and Related Surgery. 2016;32(1):190-200.e2. doi:10.1016/j.arthro.2015.06.041
- 6. Goyal D, Keyhani S, Lee EH, Hui JHP. Evidence-based status of microfracture technique: A systematic review of Level I and II studies. *Arthroscopy Journal of Arthroscopic and Related Surgery*. 2013;29(9):1579-1588.
- 7. Gordey EE, Wong IH. Cartilage repair in the hip. Annals of Joint. 2018;3(3):24-24. doi:10.21037/aoj.2018.03.08
- 8. Hoemann CD, Hurtig M, Rossomacha E, et al. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. *Journal of bone and joint surgery*. 2005;87(12):2671-2686.
- 9. Stanish WD, McCormack R, Forriol F, et al. Novel scaffold-based bst-cargel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. *Journal of Bone and Joint Surgery*. 2013;95(18):1640- 1650. doi:10.2106/JBJS.L.01345
- 10. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews. 2004;104(12):6017-6084. doi:10.1021/cr030441b
- 11. Shive MS, Stanish WD, McCormack R, et al. BST-CarGel® Treatment Maintains Cartilage Repair Superiority over Microfracture at 5 Years in a Multicenter Randomized Controlled Trial. Cartilage. 2015;6(2):62-72. doi:10.1177/1947603514562064
- 12. Rhee C, Amar E, Glazebrook M, Coday C, Wong IH. Safety Profile and Short-term Outcomes of BST-CarGel as an Adjunct to Microfracture for the Treatment of Chondral Lesions of the Hip. Orthopaedic Journal of Sports Medicine. 2018;6(8). doi:10.1177/2325967118789871
- John R, Ma J, Wong I. Better Clinicoradiological Results of BST-CarGel Treatment in Cartilage Repair Compared With Microfracture in Acetabular Chondral Defects at 2 Years. American Journal of Sports Medicine. 2020;48(8):1961-1966. doi:10.1177/0363546520924841
- Öhlin A, Ahldén M, Lindman I, et al. Good 5-year outcomes after arthroscopic treatment for femoroacetabular impingement syndrome. Knee Surgery, Sports Traumatology, Arthroscopy. 2020;28(4):1311-1316. doi:10.1007/s00167-019-05429-y
- 15. Méthot S, Changoor A, Tran-Khanh N, et al. Osteochondral Biopsy Analysis Demonstrates That BST-CarGel Treatment Improves Structural and Cellular Characteristics of Cartilage Repair Tissue Compared With Microfracture. CARTILAGE. 2016;7(1):16-28.
- 16. Kaldau NC, Brorson S, Hölmich P, Lund B. Good midterm results of hip arthroscopy for femoroacetabular impingement. Danish Medical Journal. 2018;65(6):A5483.

