Effectiveness of Fibrin Clot Implantation for Reduction Of Bone Tunnel Enlargement In Bundle-Bundle ACL Reconstruction Using Autogenous Hamstring Tendon Grafts

Suzuki N¹ Iseki T³ Onishi S⁴ Kanto R³ Nakayama H³ Yoshiya S⁴ Tachibana T³

- 1. Graduate School, Hyogo medical University
- 2. Hyogo Medical University Dept. Of Orthopaedic Surgery
- 3. Nishinomiya Kaisei Hospital

COI

Nobuyoshi Suzuki, MD

I have no financial conflicts to disclose

E-mail : nobuyoshi.suzuki0719@gmail.com

Hyogo College of Medicine Dept. of Orthopaedic Surgery TEL:0798-45-6111 FAX:0798-45-6932

Introduction

 ✓ Bone tunnel enlargement is a feared complication after ACL reconstruction. Causes of bone tunnel enlargement mainly fall into two factors.

➢ Biological factors

Immune response against allograft material, synovial fluid within the bone tunnels, increased cytokine levels.

Biomechanical factors

Micromotion of graft in the bone tunnel, aggressive rehabilitation protocol, mal-anatomical tunnel position.

Hother J. 1998

Surer L. 2017

Jagodzinski M. 2005

Fibrin clots

- Fibrin clots have long been used to enhance the healing of various musculoskeletal tissues including the meniscus and the cartilage.
- Promising results have been published recently with the use of fibrin clot during ACL reconstruction in an animal model.

Hensler, D. 2017 Ritchie J. 1998

To evaluate whether adding a fibrin clots to an autograft semitendinosus tendon graft would reduce postoperative tunnel enlargement by means of 3D-CT images analysis.

Material-Method

[2017.3 - 2021.9] Primary ACLR

Underwent CT scan at postoperative 1week and 1year.

	<u>2019.4 ~2021.9</u>	<u>2017.1 ~2019.3</u>
	With fibrin clots (n = 24)	Graft alone (n = 21)
Age	26.2 ± 10.9	27.6 ± 10.8
Male/Female	16 / 8	6 / 15
Tegner Activity Scale	5.5 ± 2.1	5.6 ± 2.1
With meniscal injury	13 (LM:6 / MM:7)	15 (LM:5 / MM:10)

Surgical technique

Prepare Fibrin clots

Collected venous blood at pre-operationAgitate until coagulated and formed in glass beaker

Placed fibrin clots within autograft

✓ Semitendinosus Tendon graft
 ✓ Anatomical double-bundle ACL reconstruction
 ✓ Placed fibrin clots between two strands of the graft femoral tunnel end

Autograft Fixation

✓ Femoral : Endo Button CL ®
✓ Tibia : Screw post fixation (6.5mm Cancellous screw)
✓ Manual Maximum tension

Measurement bone tunnel enlargement on CT images

- 1. Determine the appropriate axis, measurement of cross-sectional area at tunnel aperture and 10mm point.
- 2. Calculate the rate of enlargement of AM and PL tunnel between comparing the postoperative 1 week and 1 year after surgery.
- 3. Excluded the measurement of the merged tunnel at the tunnel aperture.

Result

> Measurement of cross-sectional area (mm^2).

	<u>@ 1 week</u>			<u>@ 1 year</u>		
	With fibrin clots (n = 24)	Graft alone (n = 21)	P value	With fibrin clots (coalition ; 8)	Graft alone (Coalition; 6)	P value
Aperture AM tunnel	22.7 ± 4.4	25.9 ± 6.6	NS	29.5 ± 9.3	43.1 ± 13.2	P<0.05
Aperture PL tunnel	22.3 ± 5.2	25.9 ± 7.2	NS	30.2 ± 9.0	45.8 ± 12.8	P<0.05
At 10mm AM tunnel	18.7 ± 2.2	19.3 ± 3.5	NS	16.7 ± 6.9	27.4 ± 8.1	P<0.05
At 10mm PL tunnel	18.3 ± 2.2	18.8 ± 2.7	NS	17.4 ± 5.1	28.6 ± 8.2	P<0.05

Result

Discussion

✓ Effect of fibrin clots on bone tunnel enlargement ➢ <u>Biological factors</u>

Releases beneficial growth factors from platelets (DGF, VEGF, TGF- β) and promotes tissue adhesion.

Especially effective inseide the bone tunnel .

Biomechanical factors

Physically reduced synovial fluid within the bone tunnels.

Especially effective for PL tunnel with larger graft motion. Taketomi S 2014

Fibrin clots reduction bone tunnel enlargement.

Conclusion

Adding the fibrin clots to the autograft in anatomic double-bundle autograft ACLR.

At tunnel aperture, only PL tunnel was reduced bone tunnel enlargement.

➢Inside bone tunnel, Both bone tunnels were reduced bone tunnel enlargement.

References

- Höher, J., et al. : Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc, 1998. 6(4): p. 231-40.
- 2. Jagodzinski, M., et al.: Analysis of forces of ACL reconstructions at the tunnel entrance: is tunnel enlargement a biomechanical problem? J Biomech, 2005. **38**(1): p. 23-31.
- 3. Surer L, et al.: Fibrin clot prevents bone tunnel enlargement after ACL reconstruction with allograft. Knee Surg Sports Traumatol Arthrosc. 2017. 25(5):1555-1560.
- 4. Hensler, D., et al.: Does fibrin clot really enhance graft healing after doublebundle ACL reconstruction in a caprine model? Knee Surg Sports Traumatol Arthrosc, 2015. 23(3): p. 669-79.
- 5. Ritchie, J.R., et al.: Meniscal repair in the goat model. The use of healing adjuncts on central tears and the role of magnetic resonance arthrography in repair evaluation. Am J Sports Med, 1998. 26(2): p. 278-84.
- 6. Taketomi S, et al.: Eccentric femoral tunnel widening in anatomic anterior cruciate ligament reconstruction. Arthroscopy. 2014. 30(6):701-9.