Analysis of Historic and Modern Treatment Outcomes in Primary Anterior Cruciate Ligament Repair: Systematic Review and Meta-analysis

Jaren LaGreca, MD; Marc Tompkins, MD University of Minnesota Department of Orthopedics, TRIA Orthopedic Center Research Institute

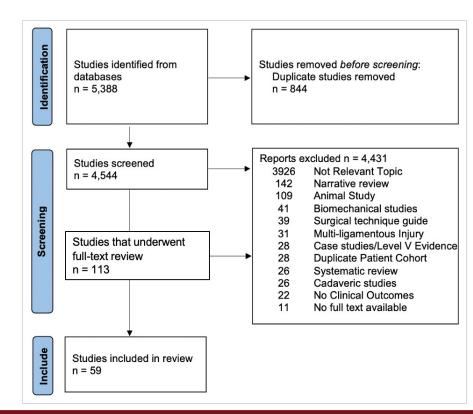
ISAKOS Congress 2023

Disclosures

- Jaren LaGreca, MD
 - No disclosures
- Marc Tompkins, MD
 - Stock received from Sarcio, Inc.
 - Support received from Allosource and Vericel support for the ROCK group
 - Editorial or Governing board of KSSTA, Sports Health, AJSM

Study Background and Objectives

- Historically, primary ACL repair was performed but subsequently abandoned (in favor of ACL reconstruction) due to unacceptably high rates of failure at mid- and long-term follow-up¹
- Recent advances in surgical technique and patient selection have resulted in a resurgence of interest in ACL repair^{2,3}


The purpose of this study was to compare historic and modern treatment outcomes of ACL repair

Methods

- Systematic review of Embase, Medline, and PubMed was performed utilizing PRISMA guidelines⁴
- Key variables collected:
 - Patient demographics
 - ACL tear location
 - Concomitant meniscus and chondral injuries
 - Timing to surgery
 - Open versus arthroscopic procedure
 - ACL repair technique
 - Recurrent knee instability

Figure 1: PRISMA guideline flow-diagram for study inclusion.

Analysis

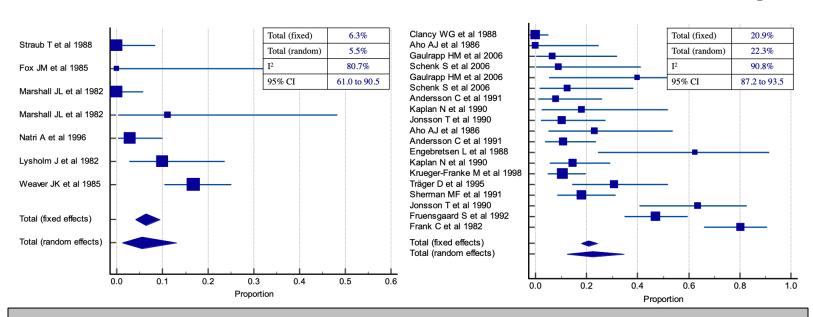
- **Primary outcome of interest:** Rate of recurrent knee instability
 - Study quality assessed using the Modified Coleman Methodology
 Scoring (MCMS)⁵
 - Descriptive statistics and proportional meta-analysis were performed using Freeman- Tukey transformation to calculate the weighted summary of ACL repair outcomes
 - Study heterogeneity was assessed with I² statistic

- Studies included in metanalysis (n=59):
 - 31 retrospective
 - 20 prospective
 - 8 RCTs
- The average MCMS was 69.2 (range: 30-95)
- The study population had a high rate of concomitant injury, with a majority of proximally based ACL tears

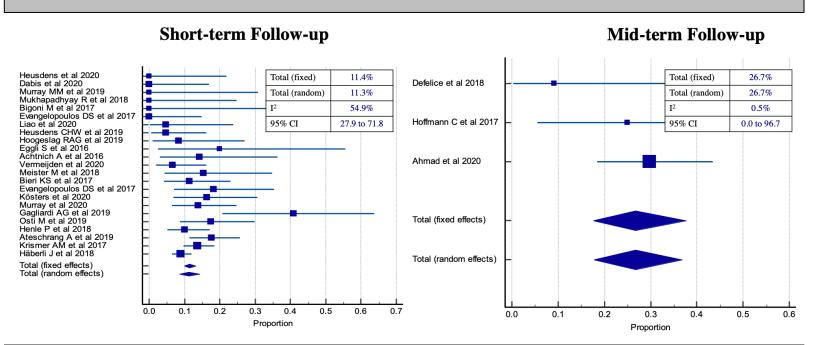
Table 1. Patient Demographics			
	n	Percentage	
Total ACL Repair Patients	3365	100%	
Average age (years)	28.1		
Sex			
Male (total reported)	1872	62.2%	
Female (total reported)	1139	37.8%	
Total	3011	100%	
NR	354	10.5%	
Tear Location			
Proximal	1490	70.1%	
Mid-substance	606	28.5%	
Distal	29	1.4%	
NR	1240	36.9%	
Concomitant Injuries			
Meniscus Tear	1211	51.9%	
Chondral Injury	59	13.1%	
Medial Collateral Ligament Injury	717	38.3%	

Abbreviations: MCMS=Modified Coleman Methodology Scoring; NR=not reported

- The majority of patients underwent primary ACL repair within 14 days of injury
- There was an equal distribution of patients treated with open and arthroscopic procedures
- ACL repair was performed via a variety of repair techniques


Table 2. Surgical Variables			
	n	Percentage	
Average Time to ACL Repair Surgery			
<14 days	1578	57.9%	
≤4 weeks	903	33.1%	
>4 weeks	246	9.0%	
NR	638	19.0%	
ACL Repair Approach			
Open Repair	1632	49.6%	
Arthroscopic Repair	1656	50.4%	
NR	77	2.3%	
ACL Repair Technique			
BEAR	75	2.2%	
DIS	1262	37.7%	
DIS with biologic augment	23	0.7%	
Suture Anchor Repair	70	2.1%	
Suture Anchor Repair with			
synthetic Augment	102	3.1%	
Suture Repair	803	24.0%	
Suture Repair with biologic augment	661	19.8%	
Suture Repair with synthetic augment	348	10.4%	

Historic


Mid-term Follow-up

The weighted rate of recurrent knee instability for combined historic techniques at short- and mid-term follow-up were 5.5% and 22.3%.

Modern

The weighted rate of recurrent knee instability for combined modern techniques at short- & mid-term follow-up were 11.3% and 26.7%.

- The rate of recurrent instability for patients age <25 was 16.4% versus 14.4% age >25
- The rates of recurrent knee instability based on type of ACL repair technique:
 - Suture anchor repair with synthetic augmentation: 6.7%
 - Suture repair with biologic augmentation: 8.1%
 - Bridge-enhanced ACL repair: 9.4%
 - Suture anchor repair: 12.7%
 - Dynamic intraligamentary stabilization: 14.4%
 - Suture repair with synthetic augment: 21.5%
 - Suture repair alone: 23.9%

Conclusion

- The literature assessing the clinical outcomes of primary ACL repair is heterogeneous and limited
- Despite advances with modern treatment, the current available evidence does not support improvements in the rate of recurrent knee instability after ACL repair as compared to historic treatment

References

- 1. Grøntvedt T, Engebretsen L, Benum P, Fasting O, Mølster A, Strand T. A prospective, randomized study of three operations for acute rupture of the anterior cruciate ligament. Five-year follow-up of one hundred and thirty-one patients. J Bone Joint Surg Am. 1996 Feb;78(2):159-68.
- 2. Kandhari V, Vieira TD, Ouanezar H, Praz C, Rosenstiel N, Pioger C, Franck F, Saithna A, Sonnery-Cottet B. Clinical Outcomes of Arthroscopic Primary Anterior Cruciate Ligament Repair: A Systematic Review from the Scientific Anterior Cruciate Ligament Network International Study Group. Arthroscopy. 2020 Feb;36(2):594-612.
- 3. Murray MM, Fleming BC, Badger GJ; BEAR Trial Team; Freiberger C, Henderson R, Barnett S, Kiapour A, Ecklund K, Proffen B, Sant N, Kramer DE, Micheli LJ, Yen YM. Bridge-Enhanced Anterior Cruciate Ligament Repair Is Not Inferior to Autograft Anterior Cruciate Ligament Reconstruction at 2 Years: Results of a Prospective Randomized Clinical Trial. Am J Sports Med. 2020 May;48(6):1305-1315.
- 4. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews 2021;10:89.
- 5. Coleman BD, Khan KM, Maffulli N, Cook JL, Wark JD. Studies of surgical outcome after patellar tendinopathy: clinical significance of methodological deficiencies and guidelines for future studies. Victorian Institute of Sport Tendon Study Group. Scand J Med Sci Sports. 2000 Feb;10(1):2-11.

