

Non-selective NSAIDs provide good clinical outcomes and do not increase retear rates post-arthroscopic rotator cuff repair: A systematic review and meta-analysis

Names: (1) Shawn JS Seah (2) Mark HX Yeo (3) Cheryl Gatot (4) Denny TT Lie

Department of Orthopaedic Surgery, Singapore General Hospital, 1 Outram Road, Singapore

The authors have no conflict of interest to declare

Background

- NSAIDs are one of the **most commonly used** oral medications
- However, its effect on postoperative tendon healing has been controversial
- Several animal studies have shown that NSAIDs have negative effects on tendon-to-bone healing
 - <u>Cohen et al</u>: NSAID impaired RC tendon healing in rat model
 - <u>Connizzo et al</u>: Ibuprofen most detrimental to supraspinatus tendon when given animals immediately post operatively
- <u>Ekhtiari et al</u>: While opioid prescription is a significant issue, many surgeons are concerned about the effects of NSAIDs on bone healing rates

Study Aims and Hypotheses

- To investigate the effect of NSAIDs on **retear rates** and **clinical outcomes** such as pain and functional scores post arthroscopic rotator cuff repair
- We hypothesize that NSAIDs do not increase retear rates and offers better pain and functional outcomes than a non-NSAIDs regime

Methods

- Four databases were searched for articles comparing outcomes of cohorts with and without NSAIDs use in the post arthroscopic rotator cuff repair pain regime.
- Meta-analysis was conducted for early (<3 months) and late (>12 months) post-operative pain scores, Functional scores (ASES), as well as retear rates.

Study Characteristics

- A total of **6 studies** were included
- Total baseline cohort size was **916**, with **443** (48.3%) in the NSAIDs group and **473** (51.6%) in the control group
- No significant difference in baseline characteristics between the groups

Study Characteristics

Study	Follow up	Comparison	Rescue Medication
Tang et al	12 months	ibuprofen vs. placebo	Both received standard prescription of hydrocodone/acetaminophen taken PRN
Siva et al	7.5 months	Ketorolac vs. No ketorolac	Both group received prescription of Oxycodone/acetaminophen PRN for moderate to severe pain
Oh et al	24 months	Celecoxib/ibuprofen vs. tramadol	Oxycodone given to all patients as rescue medication
Burns et al	12 months	Celecoxib vs. Placebo	Opioids given in both groups (oxycodone/acetaminophen, tramadol, hydrocodone/acetaminophen and codeine)
Kraus et al	24 months	lbuprofen vs. no ibuprofen	Opioid medication as needed
Rouhani et al	2 days	Celecoxib vs. no celecoxib	Acetaminophen 500mg/Hydrocodone 5mg tablet when needed

Summary of Meta-analysis

- There were no significant differences observed between the two groups in terms of VAS scores (both early and late), functional score, or retear rates. (p-value >0.05)
- Due to a relatively high degree of heterogeneity in the analysis of retear rates (I² = 61%), a subgroup analysis was conducted to evaluate if the inclusion of COX-22 selective inhibitor could affect retear rates.
- When comparing subgroups, it was observed that the use of COX-2 selective NSAIDs was associated with significantly higher retear rates compared to the group that did not. (P < 0.01)

Results – Subgroup analysis (Cox-2 vs. Non-Selective)

Subgroup	Events	Total	Events	Total	Weight	MH, Random	, 95% C	I MH, Random, 95% CI	
COX-2 Oh et al, 2017	13	57	1	25	19.0%	7.09 [0.87;	57 551		
Burns et al, 2021	10		6						
Total (95% CI)	10	77		45				1	
Prediction interval				-10		orro foront i	1001101	1	
Heterogeneity: $Tau^2 = 0$; $Chi^2 = 0$.			36); I ² = (0%					
Test for overall effect: t ₁ = 2.32 (P	= 0.2589)							
Non-selective COX									
Tangtiphaiboontana et al, 2021	7	43	13	43	32.6%	0.45 [0.16;	1.27]		
Sivasundaram et al, 2021	2								
Total (95% CI)		54		54	52.2%				
Prediction interval	+	-		+					
Heterogeneity: Tau ² = 0; Chi ² = 0.			.81); I ² = (0%				1	
Test for overall effect: t ₁ = -6.59 (P	= 0.0959)							
Total (95% CI)		131		99	100.0%	1.29 [0.18;	9,10]		
Prediction interval						[0.01; 17			
Heterogeneity: Tau ² = 0.9192; Chi	2 = 7.69,	df = 3 (P = 0.05)	$ ^2 = 61$	1%	-			
Test for everall effect: t ₂ = 0.41 (P	- 0.7007			_				0.01 0.1 1 10 100	
Test for subgroup differences: Chi	² = 13.85.	df = 1	(P < 0.01)				Favours NSAID Favours Control	

Du

Discussion

- Retear rates after arthroscopic RCR are multifactorial and can vary from 4-78%
- While controversial, there is a lack of prospective clinical trials showing that NSAIDs impair rotator cuff recovery and our study has shown that NSAID does not increase retear rates
- However, subgroup analysis showed that COX-2 inhibitor (Celecoxib) is associated with higher retear rates
- <u>Su et al</u>: There is a dose-dependent inhibition of fracture healing by Celecoxib. Non-selective NSAIDs **delay rather than inhibit** fracture healing
- <u>Tang et al</u>, Siva et al : The usage of NSAIDs has reduced opioid usage

Limitations

- Heterogeneity to the type of NSAIDs included
 - Attempts were made to differentiate non-selective NSAIDs and COX-2 selective NSAIDs
- Heterogeneity in the diagnosis of retear
- Only evaluated postoperative use of NSAIDs

Conclusion

- NSAIDs play an **important role** in the recently popularized multimodal pain management approach aimed at **reducing opioid usage**
- We found that non-selective NSAIDs usage is safe and effective and does not increase retear rates
- However, selective COX-2 inhibitors should be used with caution as they may potentially interfere with healing process, leading to higher retear rates

References

[1] Cohen DB, Kawamura S, Ehteshami JR, Rodeo SA. Indomethacin and celecoxib impair rotator cuff tendon-to-bone healing. Am J Sports Med. 2006;34(3):362-9.

[2] Connizzo BK, Yannascoli SM, Tucker JJ, Caro AC, Riggin CN, Mauck RL, et al. The detrimental effects of systemic Ibuprofen delivery on tendon healing are time-dependent. Clin Orthop Relat Res. 2014;472(8):2433-9.

[3] Ekhtiari S, Horner NS, Shanmugaraj A, Duong A, Simunovic N, Ayeni OR. Narcotic Prescriptions following Knee and Shoulder Arthroscopy: A Survey of the Arthroscopy Association of Canada. Cureus. 2020;12(4):e7856.

[4] Tangtiphaiboontana J, Figoni AM, Luke A, Zhang AL, Feeley BT, Ma CB. The effects of nonsteroidal anti-inflammatory medications after rotator cuff surgery: a randomized, double-blind, placebo-controlled trial. J Shoulder Elbow Surg. 2021;30(9):1990-7.

[5] Sivasundaram L, Mengers S, Trivedi NN, Strony J, Salata MJ, Voos JE, et al. Oral Ketorolac as an Adjuvant Agent for Postoperative Pain Control After Arthroscopic Rotator Cuff Repair: A Prospective, Randomized, Controlled Study. J Am Acad Orthop Surg. 2021;29(24):e1407-e16.

[6] Burns KA, Robbins LM, LeMarr AR, Childress AL, Morton DJ, Wilson ML. Healing rates after rotator cuff repair for patients taking either celecoxib or placebo: a double-blind randomized controlled trial. JSES Int. 2021;5(2):247-53.

[7] Kraus NR, Garvey KD, Higgins LD, Matzkin E. Ibuprofen Use Did Not Affect Outcome Metrics After Arthroscopic Rotator Cuff Repair. Arthroscopy, Sports Medicine, and Rehabilitation. 2021;3(2):e491-e7.

[8] Rouhani A, Tabrizi A, Elmi A, Abedini N, Mirza Tolouei F. Effects of preoperative non-steroidal anti-inflammatory drugs on pain mitigation and patients' shoulder performance following rotator cuff repair. Adv Pharm Bull. 2014;4(4):363-7.

[9] Su B, O'Connor JP. NSAID therapy effects on healing of bone, tendon, and the enthesis. J Appl Physiol (1985). 2013;115(6):892-9.

[10] Oh JH, Seo HJ, Lee YH, Choi HY, Joung HY, Kim SH. Do Selective COX-2 Inhibitors Affect Pain Control and Healing After Arthroscopic Rotator Cuff Repair? A Preliminary Study. Am J Sports Med. 2018;46(3):679-86.

