

Improvement Of Force Control After Platelets-Rich Plasma Injections Among Patients With Lateral Epicondylitis

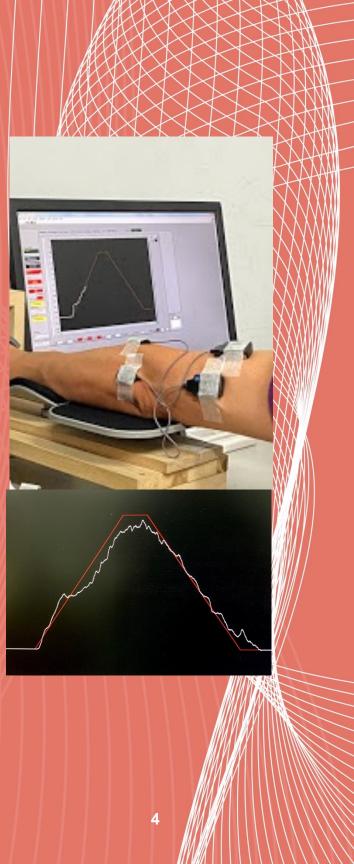
Yueh Chen, MD,Msc, Chia-ling Hu, Msc ,Chih-Kai Hong, MD, Kai-Lan Hsu, MD, PHD, Fachuan Kuan, MD, PHD ,Wei-Ren Su, MD, MSc, Ing-Shiou Hwang,PHD

Disclosures:

The author declares that there is no relevant or material financial interests that relate to the research described in this paper

Introduction

- Platelet-rich plasma (PRP) injection has been proved to significantly improve pain associated with lateral epicondylitis (LE), commonly scaled with patient-reported outcome questionnaires.
- However, little is known about force precision control for the patients with LE who receive PRP injections.
- The aim of this study was to investigate the effect of PRP injections on precision control for force generation at the three-month follow-up.



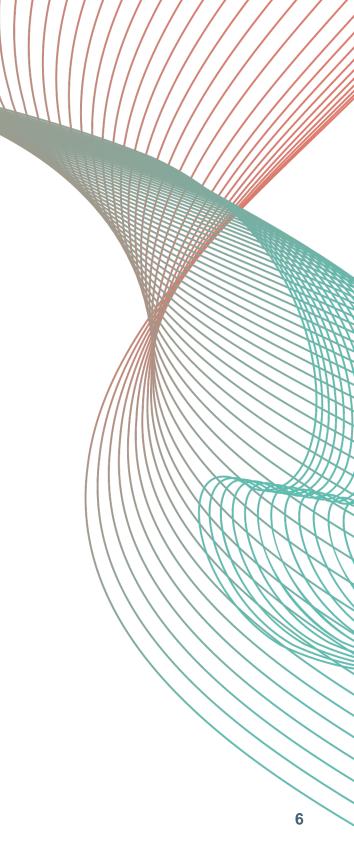
Methods

 15 age-matched healthy participants (male: female= 9:6, 26-52 yrs) and15 patient participants (male: female= 9:6, 27-51 yrs) with LE who received a single PRP injection (ACP, Arthrex Inc., Naples, FL) enrolled in this study.

 In the pre-test and post-test when the PRP group received injection for 3 months, they completed 3 maximal voluntary contraction (MVC) trials of the wrist extension followed by a visually-guided trapezoidal force task of wrist extension (8sec ramp-up phase up to 75 % MVC followed by 2-sec holding phase and 8-sec ramp-down phase) With the injured hand.

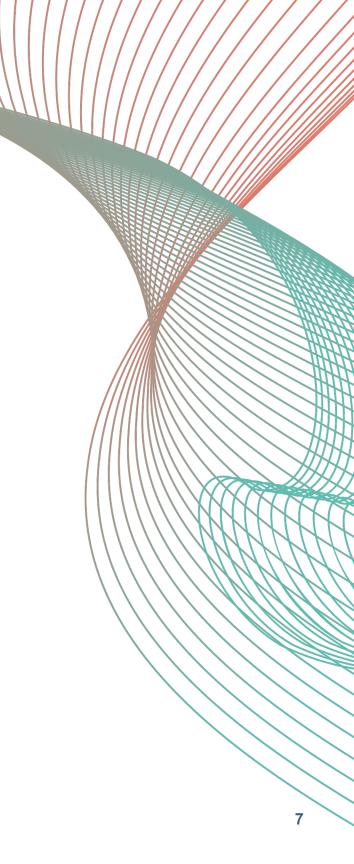
Methods

- The same force tasks, separated by 3 months, were repeated for the control group with the matched hands.
- Task errors and force fluctuation dynamics during force increase of the isometric trapezoidal contraction were characterized.
- The differences force fluctuation characteristics during the ramp-up phase was contrasted between the pre-test and post-test for the PRP and control groups.



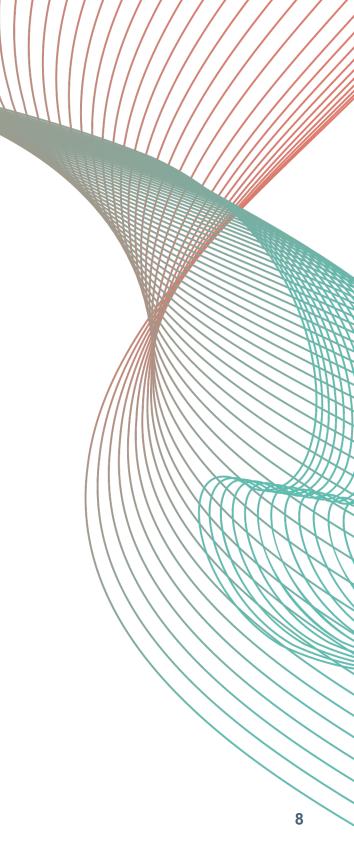
Results

	ERR_U	U_RMS	MF_U	EN_U	MVC	GRIP	VAS
						POWER	
GLOCOSE PRE- TEST(N=7)	4.11 <u>+</u> 1.90	1.81 <u>+</u> 0.38	0.54 <u>+</u> 0.13	0.16 <u>+</u> 0.27	2.71 <u>+</u> 1.56	36.57 <u>+</u> 11.08	7.66 <u>+</u> 1.50
GLUCOSE POST TEST (N=8)	3.71 <u>+</u> 1.71	1.94 <u>+</u> 0.62	0.43 <u>+</u> 0.34	0.14 <u>+</u> 0.14	2.61 <u>+</u> 1.46	31.51 <u>+</u> 8.26	3.75 <u>+</u> 3.31
T VALUE	1.250	-0.446	2.082	2.115	0.442	0.938	3.302
P VALUE	0.258	0.671	0.082	0.079	0.688	0.384	0.021
PRP PR- TEST (N=7)	4.16 <u>+</u> 1.67	2.16 <u>+</u> 0.53	0.51 <u>+</u> 0.22	0.15 <u>+</u> 0.67	2.20 <u>+</u> 1.38	28.38 <u>+</u> 11.79	6.5 <u>+</u> 1.92
PRP POST TEST (N=8)	2.41 <u>+</u> 1.34	1.65 <u>+</u> 0.89	0.62 <u>+</u> 0.23	0.20 <u>+</u> 0.79	2.73 <u>+</u> 1.30	28.60 <u>+</u> 9.86	3.12 <u>+</u> 2.10
T VALUE	2.633	1.837	-1.022	-1.578	-0.593	-0.103	3.813
P VALUE	0.034	0.109	0.341	0.159	0.001	0.921	0.007
PRE-TEST	t=-0.054 p=0.958	t=-0.146 p=0.167	t=0.296 p=0.772	t=0.356 p=0.716	t=0.678 p=0.510	t=1.378 p=0.191	t=1.383 p=0.190
POST-TEST	t=-1.653 p=0.122	t=-0.713 p=0.488	t=02.113 p=0.055	t=02.029 p=0.064	t=-0.174 p=0.0.865	t=0.615 p=0.0.549	t=0.805 p=0.0.435



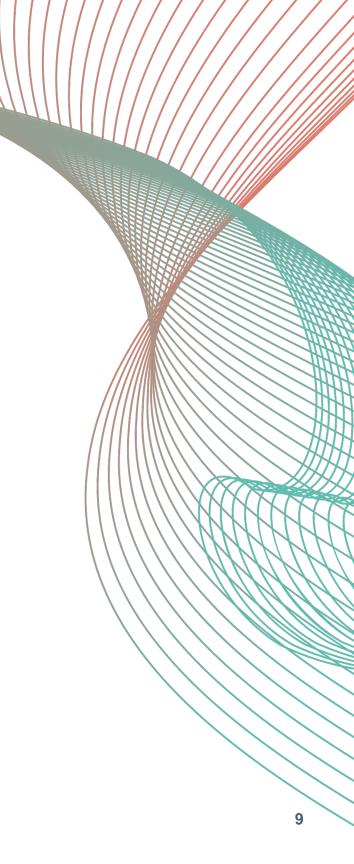
Results

- For the PRP group, root mean square (RMS) of task errors and force fluctuations were smaller in the post-test than those in the pre-test (task errors: 5.11±2.12 % MVC to 3.54±1.91 %MVC, p=0.025, force fluctuations :2.29±0.31 % MVC to 1.51±0.36 % MVC, p < 0.001).
- In terms of sample entropy (SampEn) and mean frequency (MF), complexity (0.13±0.04 to 0.18±0.08 p=0.014) and spectral level (0.43±0.16 to 0.59±0.22, p = 0.053) showed increasing trend after PRP injections.



Results

- Compare with control group, pre-test extremities showed higher task errors and fluctuations in all aspect(task error RMS: p=0.025; force fluctuation RMS p=0.002; MF of force fluctuations: p=0.007; SampEn of force fluctuations: p=0.006).
- In contrast, there were no differences in all aspects of force fluctuations between the post-test for the and group (task error RMS: p=0.405; force fluctuation RMS p=0.149; MF of force fluctuations: p=0.476; SampEn of force fluctuations: p=0.853).
- MVC of injured extremity is significantly higher in post-test at 3 months follow up (154.15±120.18 NT to 196.77±110.89 NT, p =0.002).



Conclusion

- PRP injection significantly improves precision control of wrist extension during force increase.
- In addition to force precision, PRP injections add to richness of force regulation and error correction attempts for the patient group.
- Our study clearly demonstrates that PRP injections are able to satisfactorily restore all aspects of force generation capacity at the 3 months follow-up.

