

Spin in Meta-Analyses and Systematic Reviews: Hip Labrum Reconstruction

Authors: Matthew T Gulbrandsen, MD¹; Damien Cannon, MD¹; Meng-Yung Michael Ong, BS¹; Dheeraj Yalamanchili, MD¹; Joseph N. Liu, MD²; Anthony Essilfie, MD¹

¹Department of Orthopaedic Surgery, Loma Linda University School of Medicine, ²Department of Orthopaedic Surgery, University of Southern California Keck School of Medicine

Disclosures:

Joseph Liu - AAOS: Board or committee member

American Shoulder and Elbow Surgeons: Board or committee member

Arthroscopy Association of North America: Board or committee member

Innocoll: Paid consultant

All other authors have no financial conflicts to disclose.

Introduction

- Spin is a recent concept that is defined as a reporting bias that misrepresents research and can impact clinical decision making and patient care.
- Hip labral reconstruction is an evolving technique to treat labral pathology.
- There continues to be debate of the short-term and long-term outcomes of acetabular labral reconstruction.

Objective

• The purpose of this study is to identify the prevalence of spin in meta-analyses and systematic reviews regarding the efficacy of acetabular labral reconstruction.

June 18-June 21

Materials and Methods

- Electronic libraries were searched for meta-analyses and systematic reviews regarding hip labrum reconstruction.
- The nine most severe types of spin commonly found in abstracts¹ were used as an evaluation tool.
- Other variables evaluated included number of citations, journal impact factor, reported conflicts of interest, adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and methodologic quality according to A Measurement Tool to Assess Systematic Reviews (AMSTAR-2).

Results

- Ten articles met our inclusion criteria and 70% (7/10) were found to have at least one form of spin present.
- The most prevalent types of spin were type 5 (6/10, 60%), type 3 (4/10, 40%), and type 8 (3/10, 30%).
- No significant associations were found between the presence of spin and other variables evaluated.

3 72 8	SAKOS ONGRESS 2023	Boston Massachusetts June 18-June 21

	f t
Table 1: The Nine Most Severe Types of Spin per Yavchitz et al ¹	9

Nine Most Severe Types of Spin	Articles With Spin
1. Conclusion contains recommendations for clinical practice not supported by the findings	0 (0%)
2. Title claims or suggests a beneficial effect of the experimental intervention not supported by the findings	0 (0%)
3. Selective reporting of or overemphasis on efficacy outcomes or analysis favoring the beneficial effect of the experimental intervention	4 (40%)
4. Conclusion claims safety based on non- statistically significant results with a wide confidence interval	0 (0%)
5. Conclusion claims the beneficial effect of the experimental treatment despite high risk of bias in the primary studies	6 (60%)
6. Selective reporting of or overemphasis on harm outcomes or analysis favoring the safety of the experimental intervention	0 (0%)
7. Conclusion extrapolates the review's findings to a different intervention	1 (10%)
8. Conclusion extrapolates the review's findings from a surrogate marker of a specific outcome to the global improvement of the disease	3 (30%)
9. Conclusion claims the beneficial effects of the experimental treatment despite reporting bias	0 (0%)

Limitations

- Although clearly defined, determining spin has a subjective aspect which the authors attempted to mitigate via independent assessment and predetermined protocol for disagreements.
- Due to the small sample size of 10 studies, the results may underestimate or overestimate the true prevalence.

Conclusion

- Spin was present in the majority of meta-analyses and systematic reviews pertaining to hip labrum reconstruction.
- Education and recognition of spin is crucial for orthopedic surgeons when making clinical decisions based on review of literature.
- Improved guidelines should be considered to reduce the prevalence of spin in orthopedic literature.

References

1. Yavchitz, A., Ravaud, P., Altman, D. G., Moher, D., Hrobjartsson, A., Lasserson, T., & Boutron, I. (2016). A new classification of spin in systematic reviews and meta-analyses was developed and ranked according to the severity. *Journal of clinical epidemiology*, 75, 56–65. https://doi.org/10.1016/j.jclinepi.2016.01.020

