

Time-series biological responses toward decellularized bovine tendon graft and autograft for 52 consecutive weeks after rat anterior cruciate ligament reconstruction

OMasafumi Itoh^{1,2}

Junya Itou², Umito Kuwashima², Ken Okazaki², Kiyotaka Iwasaki¹

¹Cooperative Major in Advanced Biomedical Sciences, Joint Graduate School of Tokyo Women's Medical University

²Department of Orthopedic Surgery, Tokyo Women's Medical University

Disclosures

• Funding:

This study was supported by A-STEP (Adaptable and seamless technology transfer program through target-driven R&D) Feasibility Stage (No. AS231Z04918F), Japan Science and Technology Agency.

• Conflict of interests

The authors declare no competing interests.

Background: Issues in Grafts for ACL Reconstruction

	Autograft: First choice	Artificial ligament: Almost withdrawn from the market ¹	Allograft : Mainly U.S.
	2)	3)	4)
Invasiveness	Taken from healthy legs	No harvesting required	No harvesting required
Supply	 ✓ Limited supply ✓ Difficult to predict size⁵ 	Stable supply available	Poor availability
Outcomes	Rupture rate: 5-10% ⁴	Rupture rate: 47% (Leeds-Keio@5yrs.) ⁶	Rupture rate: 29.0% ⁷

The ideal graft

- 1. No volume limits
- 2. No sacrifice of autologous tissue
- 3. Biocompatibility
- 4. Initial strength and durability

Tissue structures are difficult to create, so **biological tissues** are preferable

Tissue ''decellularization'' technology

Aim

Evaluation of the time-series biological responses of bovine decellularized tendons in the rat ACL-R model

Methods

F femur, T tibia, G graft, S 3-0 silk thread

Assessment BMD @graft-tibial tunnel interface

* Inhibited BMD reduction \rightarrow Enhanced bone-tendon healing¹³

Setting tunnel diameter at 3 sites within 2 mm of growth plate @0 day

CT computed tomogreiphy, E epiphysis, T tunnel

Tibial-tunnel diameter @0-day(N=6)

Location	Major axis mm	Minor axis mm
1	1.83	1.81
2	1.80	1.80
3	1.82	1.80

Interpolate three locations to determine the measurement area

Methods

Assessment the cellularity of the grafts (HE stain)

- ✓ Cellularity was assessed in the intra-articular graft and the graft in the tibial tunnel.
- ✓ Cell counting was performed in six 200-µm2 square regions. Then, the average number of cells in the six squares was used.
- a: Overall view of the femur–graft–tibia complexb: Magnified view of the intra-articular graftc: Magnified view of the graft in the tibial tunnel

Immunohistological staining of M1&M2 macrophages.

- ✓ M1: Proinflammatory activities¹⁴
- ✓ M2: Tissue repair properties¹⁵
- \checkmark Counted in the same manner as above
- d: Overall view of the femur–graft–tibia complex
- e: M1 macrophages
- f: M2 macrophages

F femur, G graft, T tibia

Evaluation timepoint

- Group-D&A; Evaluated @1, 2, 4,
 8, 16, 26, 52w (7-timepoints; each n = 6)
- ✓ Group-N; Evaluated @0d

Statistics

- Student's t-test or Mann-Whitney U test Kruskal-Wallis test or one-way analysis of
- Kruskal–Wallis test or one-way analysis of variance
- ✓ P < 0.05: Significant

Results

The gross appearance of the right knee at each time point in representative cases

- \checkmark The decellularized xenograft tissues were retained for 52 weeks in the knee joint in a manner similar to that of the autografts.
- \checkmark The black dashed line shows the outline of the graft.

Group D, decellularized bovine tendon graft; group A, autologous tendon graft.

BMD at the interface between graft and peritibial tunnel

- No significant enlargement of the tibial tunnel and no \checkmark difference of BMD between the groups over time.
- a: Micro-CT images of slices parallel to the tibial tunnel at each time point in each group.
- b: Box plots showing the BMD of the peritibial tunnel for each group at each time point. (each, n = 6)

Results

Week

Week16

Week26

Week8

Week4

Group

D

¢Α

άN

52

Week52

F width :

D>A

tissue)

width :

D<A

appeared in

group A

appeared in

group D

Cellularity of the decellularized bovine tendon and autologous tendon

- Intra-articular decellularized grafts were cellularized \checkmark comparable to or faster than autologous tendons.
- Intratibial tunnel decellularized grafts were cellularized at a rate comparable to autografts.
- a: Cell counts in the intra-articular grafts of both groups at each period.
- b: Representative HE-staining showing cell infiltration in the intra-articular graft at each period.
- c: Cell counts in the intratibial tunnel grafts of both groups at each period.
- d: Representative HE staining showing cell infiltration in the intratibial tunnel graft at each period.

The graft–tibial tunnel interface healing in both groups at each period

- ✓ **Sharpey-like fibers** appeared earlier in group D (4w) than in group A (8w).
- ✓ Decellularized grafts suggested faster "tendon-bone healing" than autografts.

The black arrow indicates a Sharpey-like fiber. B bone, T tendon, F fibrous tissue.

8

Discussion

The most important findings

- ✓ **Decellularized xenografts** were **repopulated** with recipient rat cells as were autografts.
- ✓ The decellularized xenografts induced an M2-dominant host response and earlier cell infiltration compared with the autografts.
- ✓ In contrast, the autografts resulted in M1-type inflammation and cell infiltration was slower than decellularized xenografts.

✓ Cell infiltration speed into	Number of cells in the grafts		ne grafts	Reasons for faster cell infiltration into
intra-articular grafts; $D \ge A$ \checkmark Cell infiltration speed into	Group	Intra-articular	Intra-tunnel	intra-tunnel grafts
intra-tibial tunnel grafts; D=A	D	No significant difference with native @4w	Plateau @4w	↓ Bone marrow cells infiltrate directly into the intra-bone tunnel graft
	Α	Plateau @8w	Plateau @4w	

Ovine ACLR model (autograft) ¹⁶		
Decreased number of cells in autografts @2w		
\rightarrow Cell necrosis within autograft in early stage		
\rightarrow Subsequently, cell infiltration		

			Period *16
0 Weeks	2 Weeks	6 Weeks	12 Weeks
1187 (212)	$25 (18)^a$	557 $(220)^a$	762 (263) ^{a,b}

The current study

The reason the number of cells @1w in group A was lower than that of the native autologous cells was thought to be in the process of cell necrosis or after necrosis. (Rats have faster timelines than sheep)¹⁷

M1 (Inflammation): Tendency for D<A M2 (Tissue repair): Tendency for D>A

Number of M1 and M2 macrophages in the grafts			
	M1(Inflammation)	M2(Tissue repair)	
Intra-articular	D <a 16w<="" @1,="" th=""><th>D>A @4w</th>	D>A @4w	
Intra-tibial tunnel D <a @8w<="" th=""><th colspan="2">D≒A @entire period</th>		D≒A @entire period	
Consistent with Brown's " <u>Tissues</u> <u>containing cellular components, even</u> <u>autologous, exhibit an M1-dominant</u> <u>inflammatory response</u> ."		It was suggested that decellularized tendons were as biocompatible or more biocompatible than autologous tendons.	

Limitations

- 1. The **biomechanical properties** of explanted decellularized and autologous tendons were **not tested**.
- 2. Whether the observation period of 52 weeks in rats is sufficient to evaluate in vivo remodeling processes thoroughly is unclear.

Conclusions

- 1. Bovine tendon-derived decellularized grafts have excellent time-series recellularization and tendon-bone integration abilities compared with autografts in the rat ACLR model for up to 52 weeks.
- 2. Sharpey-like fibers appeared earlier in group D than in group A.
- 3. The number of M2 macrophages responsible for tissue repair tended to be higher in the decellularized xenograft tendon at 4–8 weeks after ACLR than in the autografts.

References

- 1. Marieswaran, Jain et al. 2018
- 2. Surgical techniques in sports medicine 1st edition, 2007
- 3. Matsumoto H, The Keio Journal of Medicine,161-166, 2001
- 4. Barret AM, Am J Sports Med, 39:2194-2198, 2011.
- 5. An, Scholes et al. 2017
- 6. Schroven IT et al. 1994
- 7. Engelman, Carry et al. 2014
- 8. Park, S.Y. et al. 2013
- 9. Iwasaki K, et al. 2005
- 10. Crapo, P.M. et al. 2011.

- 11. Strauss, Miles et al. 2021
- 12. Itoh, Imasu et al. 2022
- 13. Thomopoulos, Matsuzaki et al. 2007
- 14. Mantovani, Sica et al. 2005
- 15. Badylak, Valentin et al. 2008
- 16. Kondo, Yasuda et al. 2012
- 17. Iismaa, Kaidonis et al. 2018
- 18. Brown, Valentin et al. 2009