

Short-term clinical outcomes of remnant-preserving single-bundle augmentation in anterior cruciate ligament reconstruction: Comparison with single- and double-bundle reconstruction

Mariko Osugi¹, Atsuo Nakamae¹, Yoshio Sumen², Kazuhiro Tsukisaka³, Masataka Deie⁴, Eisaku Fujimoto⁵, Nobuo Adachi

Mariko Osugi¹,MD

Atsuo Nakamae¹, Yoshio Sumen², Kazuhiro Tsukisaka³, Masataka Deie⁴, Eisaku Fujimoto⁵, Nobuo A

¹ Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima,

² Department of Orthopaedic Surgery, JA Onomichi General Hospital, Hiroshima, Japan

³ Department of Orhopaedic Surgery, Mazda Hospital, Hiroshima, Japan

⁴ Department of Orthopaedic Surgery, Aichi Medical University, Aichi, Japan/

⁵ Department of Orthopedic Surgery, Chugoku Rosai Hospital, Hiroshima, Japan,

Background

Anterior cruciate ligament (ACL) augmentation technique (remnantpreserving single-bundle ACL reconstruction) for treatment of the injured ACL has received attention as preservation of the ACL remnant has several potential advantages. These are said to include preservation of the mechanoreceptors within the ACL remnant,enhancement of revascularisation and ligamentisation of the grafted tendon, and contribution of the remnant to stability of the knee.

Purpose

The purpose of this study is to evaluate the clinical outcomes of single-bundle ACL augmentation (remnant preserving ACL reconstruction) and to compare them with those of anatomic single- or double-bundle ACL reconstruction.

Methods Patients

The Hiroshima Clinical ACL Research Project (**Hiroshima CARP**) is an ongoing prospective, multicenter, cohort study of patients undergoing ACL reconstruction.

Patients who underwent ACL reconstruction surgery between 2017 and 2019 at any of the nine participating institutions were enrolled in this study.

- A total of 565 patients (288 males, 51%) were enrolled in this study.
- Surgical procedures;
- Single-bundle ACL augmentation ; 206 (103 female, 103 male)
- Single-bundle ACL reconstruction ; 238 (127 female, 111 male) ->
- Double-bundle ACL reconstruction ; 121 (47 female, 74 male)

Methods Patie	nt charact	eristics		
Surgical procedures	Single-bundle ACL reconstruction	Double-bundle ACL reconstruction	ACL augmentation	P-value
Number of patients	238	121	206	-
Age (years)	29.2 ± 12.1	29.1 ± 12.7	29.6 ± 12.7	.937
Sex (male : female)	111:127	74:47	103 : 103	.032
BMI at ACLR	24.1 ± 4.1	24.3 ± 4.0	23.7 ± 3.5	.318
Time between injury and surgery (months)	29.2 ± 12.1	29.1 ± 12.7	29.6 ± 13.5	.937
Side-to-side difference of anterior knee laxity before ACL reconstruction (mm)	3.9 ± 2.4	3.1 ± 2.5	3.2 ± 2.2	.001
Pivot-shift phenomena before surgery (IKDC grading) (Grade 0:1:2:3)	13% : 44% : 32% : 11%	16% : 53% : 25% : 7%	5% : 59% : 32% : 4%	.001
Extension angle of the knee joint before surgery (degree)	-0.5 ± 5.0	-2.9 ± 4.4	-0.8 ± 5.0	.000
Flexion disturbance of the knee joint before surgery (degree)	3.2 ± 5.9	5.0 ± 9.2	3.4 ± 6.0	.063

Methods Postoperative clinical evaluation

Patients were assessed preoperatively and 1 year postoperatively with

 Measurement of anterior knee laxity using an arthrometer
Pivot-shift test grade (IKDC grading) (Grade 0:1:2:3)
Knee Injury and Osteoarthritis Outcome Score (KOOS) subscales (Pain, other Symptoms, ADL, Sport/Rec, QOL)
Extension angle of the knee joint
Flexion disturbance of the knee joint

Postoperative anterior knee stability Results

The mean side-to-side differences measured with an arthrometer at one year after surgery

17.6 0.01 0.02 12.4 6.3 0.01 90%

Results Postoperative KOOS and range

Surgical p	orocedures	Single-bundle ACL reconstruction	Double-bundle ACL reconstruction	ACL augmentation	P-valu
KOOS subscales	Pain	76.0 ± 20.3	74.6 ± 19.5	77.1 ± 16.7	.519
	other Symptoms	89.8 ± 12.4	88.3 ± 14.5	89.3 ± 13.8	.003
	ADL	98.3 ± 5.3	96.6 ± 10.6	97.6 ± 6.2	.164
	Sport/Rec	50.0 ± 29.6	46.8 ± 27.5	49.5 ± 27.4	.615
	QOL	48.9 ± 25.6	44.0 ± 24.9	47.3 ± 25.9	.289
Extension angle o	f the knee joint	-0.4 ± 2.7	-1.8 ± 3.4	-0.5 ± 3.0	.000
Flexion disturbance of the knee joint		1.2 ± 3.0	1.5 ± 3.2	1.2 ± 3.0	.000

There were no significant differences in the postoperative KOOS subscales among the three groups. Although extension disturbance of the knee after ACL surgery was significantly worse in double-bundle reconstruction group, the difference had already been found before the surgery.

of motio	DN
augmentation	P-value

Conclusions

- Patients in the ACL augmentation group showed better pivot shift test results than those in the single-bundle reconstruction group at one year after surgery.
- Clinical outcomes of the patients with ACL augmentation were comparable, if not superior, with those of patients undergoing the double-bundle ACL reconstruction.

References

- Adachi N, Ochi M, et al (2000) Anterior cruciate ligament augmentation under arthroscopy. A minimum 2-year follow-up in 40 patients. Arch Orthop Trauma Surg.120(3-4):128-33.
- Nakamae A, Adachi N, Ochi M et al.(2018) Risk factors for progression of articular cartilage damage after anatomical anterior cruciate ligament reconstruction: a second-look arthroscopic evaluation. Bone Joint J. 100-B(3):285-293.
- **Nakamae A**, Ochi M, Adachi N, et al.(2014) Clinical outcomes of second-look arthroscopic evaluation after anterior cruciate ligament augmentation: comparison with single- and double-bundle reconstruction. Bone Joint J. 96-B(10):1325-32.
- Takahashi T, Kondo E, Yasuda K, et al. (2016) Effects of Remnant Tissue Preservation on the Tendon Graft in Anterior Cruciate Ligament Reconstruction: A Biomechanical and Histological Study. Am J Sports Med. 44(7):1708-16.
- **Ochi M**, Adachi N, et al. (2009) A minimum 2-year follow-up after selective anteromedial or posterolateral bundle anterior cruciate ligament reconstruction. Arthroscopy. 25(2):117-22.
- Ochi M, Adachi N, et al. (2006) Anterior cruciate ligament augmentation procedure with a 1incision technique: anteromedial bundle or posterolateral bundle reconstruction. Arthroscopy. 22(4):463.e1-5.

