

Intra- and inter-operator reliability assessment of a novel extramedullary accelerometer-based smart cutting guide for total knee arthroplasty: an in vivo study

STEFANO ZAFFAGNINI¹

Domenico Alesi¹, Arcangelo Russo², Mirco Lo Presti¹, Iacopo Sassoli¹, Matteo La Verde¹, Giulio Maria Marcheggiani Muccioli¹

1: 2nd Orthopedic Clinic, IRCCS Rizzoli ORrthopedic Institute, Bologna, Italy

2: Orthopaedic and Traumatologic Unit, Umberto I Hospital, Azienda Sanitaria Provinciale Di Enna, Enna, Italy

AUTHOR DISCLOSURES

S.Z.: DePuy and Smith&Nephew consultant

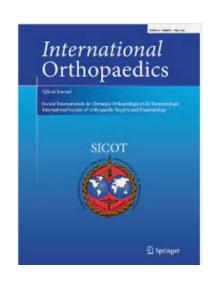
OTHER AUTHORS: Nothing to disclose

CLINICAL STUDY

International Orthopaedics https://doi.org/10.1007/s00264-022-05571-2

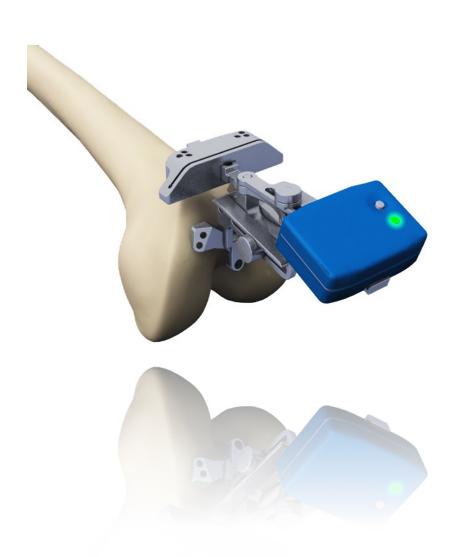
ORIGINAL PAPER

Intra- and inter-operator reliability assessment of a novel extramedullary accelerometer-based smart cutting guide for total knee arthroplasty: an in vivo study


Giulio Maria Marcheggiani Muccioli^{1,2} · Domenico Alesi¹ · Arcangelo Russo³ · Mirco Lo Presti¹ · Iacopo Sassoli¹ · Matteo La Verde¹ · Stefano Zaffagnini^{1,2}

Received: 6 April 2022 / Accepted: 30 August 2022 © The Author(s) 2022

25 PATIENTS


HYPOTHESIS: GOOD CORRELATION BETWEEN DIFFERENT OPERATORS WITH A DIFFERENCE BETWEEN REPEATED MEASUREMENTS OF LESS THAN 1°

PERSEUS: An inertial sensors cutting guide

- ✓ NO ENDOMEDULLARY GUIDE
- ✓ REDUCES SURGICAL TIME
- ✓ SAME PRECISION VS NAVIGATOR
- ✓ LOWER COSTS AND COMPLEXITY
 VS NAVIGATOR OR CUSTOM
- ✓ LIVE FEEDBACK ON BONE RESECTION ORIENTATION

This technology has been proven to be safe and reliable

author	type	NR subj	goal	НКА*	FEM ^α		Tib ^α		
					VV	AP	VV	AP	adverse events
Nam	vivo	47	comparison to manual	89%	-	-	97%	95%	none
Nam	cad	5	repeated measurement	-	100%	100%	-	-	none
Nam	vivo	80	retrospecive evaluation	93%	95%	-	96%	-	none
Nam	cad	5	verify retrospectively	-	-	-	95%	95%	none
Nam	vivo	151	verify retrospectively	97%	-	-	95%	96%	none
Nam	vivo	42	verifi retrospectively	-	-	-	98%	96%	none
Goh	vivo	38	comparison with CAS	92%	92%	-	84%	-	none
Huang	vivo	53	verify retrospectively	83%	87%	-	96%	94%	none
Bugbee	vivo	90	verify retrospectively	-	-	-	93%	96%	None
Iorio	vivo	53	verify retrospectively	100%	-	-	96%	94%	none
Nam	vivo	48	verify retrospectively	94%	96%	-	96%	-	none
Scuderi	vivo	14	verify retrospectively	-	100%	100%	80%	100%	none
Fujimoto	vivo	109	verify retrospectively	84%	92%	89%	97%	90%	1

Nam D, et al. Extramedullary Guides Versus Portable, Accelerometer-Based Navigation for Tibial Alignment in Total Knee Arthroplasty: A Randomized, Controlled Trial: Winner of the 2013 HAP PAUL Award. J Arthroplasty. 2013 Jul 19. Nam D, et al. Cadaveric analysis of an accelerometer-based portable navigation device for distal femoral cutting block alignment in total knee arthroplasty. *Comput Aided Surg.* 2012;17(4):205-210.

Nam D, et al. Accelerometer-based, portable navigation vs imageless, large-console computer-assisted navigation in total knee arthroplasty: a comparison of radiographic results. J Arthroplasty. 2013 Feb;28(2):255-61.

Nam D, et al. Cadaveric results of an accelerometer based, extramedullary navigation system for the tibial resection in total knee arthroplasty. Knee. 2012;19(5):617-621. doi:10.1016/j.knee.2011.09.008.

Nam D, et al. Radiographic results of an accelerometer-based, handheld surgical navigation system for the tibial resection in total knee arthroplasty. Orthopedics. 2011 Oct 5;34(10):e615-21.

Nam D, et al. Radiographic analysis of a hand-held surgical navigation system for tibial resection in total knee arthroplasty. J Arthroplasty. 2011 Dec;26(8):1527-33.

Goh GS, et al. Accelerometer-Based Navigation Is as Accurate as Optical Computer Navigation in Restoring the Joint Line and Mechanical Axis After Total Knee Arthroplasty: A Prospective Matched Study. J Arthroplasty. 2016 Jan;31(1):92-7. Huang EH, et al. Accuracy of A Handheld Accelerometer-Based Navigation System for Femoral and Tibial Resection in Total Knee Arthroplasty. J Arthroplasty. 2015 Nov;30(11):1906-10.

Bugbee WD, et al. Accuracy of a hand-held surgical navigation system for tibial resection in total knee arthroplasty. Knee. 2014 Dec;21(6):1225-8.

Iorio R, et al. Clinical and radiographic outcomes of an accelerometer-based system for the tibial resection in total knee arthroplasty. Int Orthop. 2015 Mar;39(3):461-6.

Nam D, et al. Accelerometer-based computer navigation for performing the distal femoral resection in total knee arthroplasty. J Arthroplasty. 2012;27(9):1717-1722.

Maderbacher G, et al. Appropriate sagittal femoral component alignment cannot be ensured by intramedullary alignment rods. Knee Surg Sports Traumatol Arthrosc. 2016;24(8):2453-2460. doi:10.1007/s00167-015-3541-8 Scuderi GR, et al. Total knee arthroplasty with a novel navigation system within the surgical field. Orthop Clin North Am. 2014 Apr;45(2):167-73.

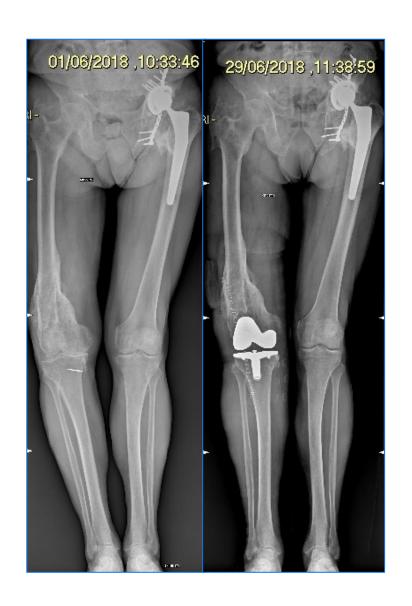
Fujimoto E, et al. Technical Considerations and Accuracy Improvement of Accelerometer-Based Portable Computer Navigation for Performing Distal Femoral Resection in Total Knee Arthroplasty. J Arthroplasty. 2017;32(1):53-60.

PERSEUS

Alignment validation:

- ✓ PRECISION OF 0.2°
- ✓ ACCURACY OF 0.8°

Usability validation:



- ✓ LOW USAGE TIME
- ✓ 1 CASE LEARNING TIME

PERSEUS

Perseus is helpful in cases like:

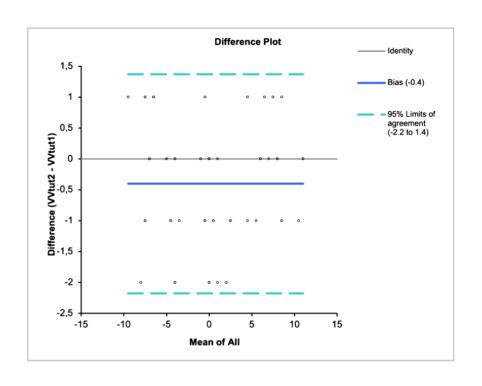
- ✓ EXTRA ARTICULAR BONE DEFORMITIES
- ✓ ENDOMEDULLARY SCLEROSIS
- ✓ LONG STEM THA
- ✓ NON-REMOVABLE INTRAMEDULLARY HARDWARES

METHODS

MAIN SURGEON AND ASSISANT MADE 3 REPEATED TESTS.

RESULT WAS RECORDED FOR EACH TEST

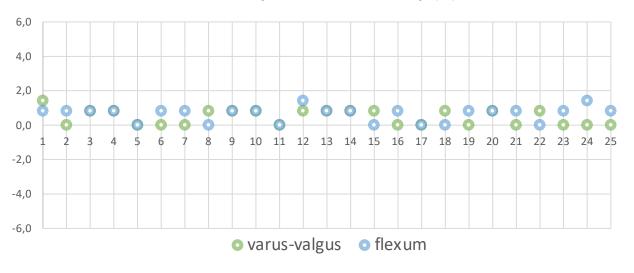
THEN FINAL RESECTION WAS VERIFIED WITH PANORAMIC X-RAY



INTER-OPERATOR RELIABILITY

AGREEMENT BETWEEN THE TWO OPERATORS WAS STATISTICALLY SIGNIFICANT (P < 0.05) WITH A BIAS OF -0.4° (95% CI -0.6° TO -0.2°)

Varus-valgus	0.8° (0 – 1.5°)
Flexum	0.9° (0 – 2.1 °)


INTRA-OPERATOR RELIABILITY

	Operator 1	Operator 2
Varus-valgus	0.4° (0 – 1.4 °)	0.4° (0 – 1.4 °)
Flexum	0.5° (0 – 1.4 °)	0.6° (0 – 1.4 °)

Intra-Operator variability (1)

Intra-Operator variability (2)

SMART EXTRAMEDULLARY CUTTING GUIDE

ACCURACY

AVERAGE DIFFERENCE BETWEEN CUT
ORIENTATION MEASURED WITH DEVICE
AND FINAL IMPLANT POSITION, MEASURED ON
X-RAYS, WAS 0.2° (95% CI – 1.5° TO 1.7°)

CONCLUSIONS

ANATOMICAL REFERENCES AND MECHANICAL METHODS

- ✓ BASED ON PATIENTS' ANATOMY AND ON SURGEON EXPERIENCE
- ✓ RISK OF MALALIGNMENT > +/-3°

NAVIGATION

- ✓ HIGH ALIGNMENT PRECISION
- ✓ INTEROPERATOR REPRODUCIBILITY
- ✓ HIGH COSTS AND LONGER SURGICAL TIMES

SENSORS

- ✓ BETTER USABILITY
- ✓ LOWER COSTS
- ✓ SAME ACCURACY RESPECT TO CAS

TKA IS ALWAYS A GOOD COMPROMISE FURTHER RESEARCH IS NEEDED WITH LONG-TERM FOLLOW-UP

REFERENCES

- Marcheggiani Muccioli GM, Alesi D, Russo A, Lo Presti M, Sassoli I, La Verde M, Zaffagnini S. Intra- and interoperator reliability assessment of a novel extramedullary accelerometer-based smart cutting guide for total knee arthroplasty: an in vivo study. Int Orthop. 2023 Jan;47(1):83-87