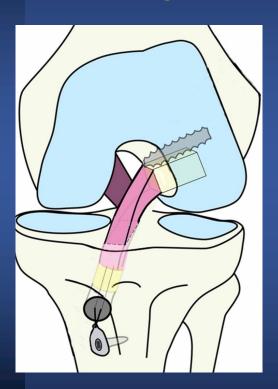
Comparison of Clinical Outcomes between a Bone-patellar Tendon-bone and Quadriceps Tendon-bone Autografts in Anatomic Rectangular Tunnel Anterior Cruciate Ligament Reconstruction

Kazunori Shimomura¹⁾, Yasukazu Yonetani¹⁾, Ayaka Tanaka²⁾, Akira Tsujii³⁾, Masayuki Hamada⁴⁾

- 1) Department of Sports Orthopaedics, Hoshigaoka Medical Center, Osaka, Japan
- 2) Department of Orthopaedic Surgery, Osaka Rosai Hospital, Osaka, Japan
- 3) Department of Sports Medical Biomechanics, Osaka University Graduate School of Medicine, Osaka, Japan
- 4) Department of Orthopaedic Surgery, Seifu Hospital, Osaka, Japan

ISAKOS Congress 2023 in Boston


COI Disclosure

Presenter's names:

Shimomura K, Yonetani Y, Tanaka A, Tsujii A, Hamada M

There are no COI with regard to this presentation.

Anatomic Rectangular Tunnel Anterior Cruciate Ligament Reconstruction (ART-ACLR)

- Mimic the normal ACL fiber arrangement ¹⁾
- Resembled the normal knee biomechanics than "Round tunnel" (Cadaver study) ²⁾
- Excellent subjective and objective outcomes w/ bone patellar tendon bone (BTB) graft 3)

No clinical studies on ART-ACLR w/ quadriceps tendon bone (QTB) graft

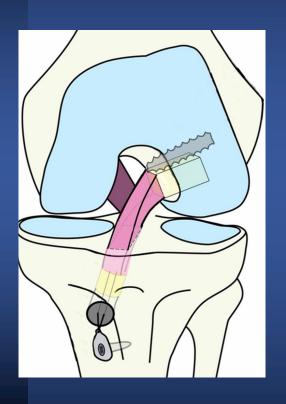
Hypothesis & Aim

Hypothesis

QTB has thicker and higher tensile strength than BTB. 4),5)

⇒ QTB would reduce the rate of re-injury and anterior knee pain.

Aim


To compare minimum 1-year clinical outcomes after ART-ACLR with an autograft between QTB and BTB.

Patients

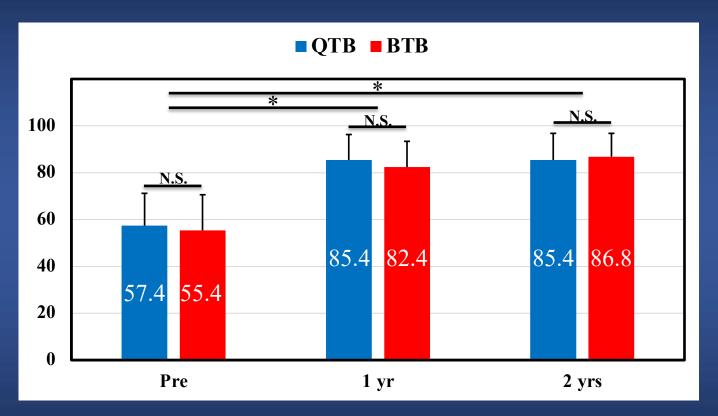
			QTB (N=49)	BTB (N=52)	P value
April 2018 - March 2021 96 QTB vs 95 BTB	21	Age	24.8 ± 11.6	29.4 ± 13.6	0.08*
		M/F	17 / 32	20 / 32	0.69**
	Characteristics	Height (cm)	164.0 ± 7.9	164.9 ± 7.2	0.67*
Minimum 1-year FU	77	Weight (kg)	62.7 ± 11.4	60.9 ± 10.2	0.52*
		Meniscal Repair	20 (40.8 %)	13 (25.0 %)	0.09**
49 QTB vs 52 BTB	Additional Surgeries	Meniscectomy	6 (12.2 %)	5 (9.6 %)	0.67**
		Cartilage Drilling	2 (4.1 %)	0 (0 %)	0.14**
			*W/1	sum tast **Daarsan's o	h: a assaura 4 a a 4

^{*}Wilcoxon rank sum test, **Pearson's chi-square test

Surgical Procedures

- ART-ACLR ¹⁾
- Graft: QTB or BTB
- Femoral fixation: interference screw
- Tibial fixation: double spike plate (DSP)
- Initial graft tension: 10 N w/ tensioning boots

Postop Rehab


- Knee brace -2w
- 1w- ROM exercise
- 1-2w Patrial weight bearing
- 2-3w Full weight bearing
- 3mo- Jogging
- 8mo- Return to Sports

Outcome Assessments

- Patient-reported outcome measures (PROMs)
 - --- IKDC
- Side-to-side differences (SSD) in KT-1000
- Re-injury
 - --- ipsilateral & contralateral knees
- Anterior knee pain (AKP)

Result 1

IKDC

* p < 0.05 (Kruskal-Wallis test)

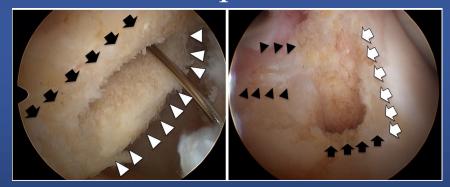
Clinical outcomes

		QTB (N=49)	BTB (N=52)	P value
SSD in KT-1000		0.37 ± 1.36 mm	0.36 ± 0.99 mm	0.88*
Re-injury	Ipsilateral	6.1 % (3 case)	9.6 % (5 case)	0.52**
	Contralateral	2.0 % (1 cases)	1.9 % (1 cases)	0.97**
AKP		4.1 % (2 cases)	23.1 % (12 cases)	0.006**

*Wilcoxon rank sum test, **Pearson's chi-square test

Discussion 1

QTB vs BTB


Previous studies ^{6),7)} This study No differences Clinical outcomes No differences 89% vs 68% 0.37 mm vs 0.36 mm **Stability** (SSD 0-3mm)(SSD in KT-1000) 5.5% vs 6.7% 6.1% vs 9.6% Failure rates 4.1% vs 23.1% 4.6% vs 26.7% AKP

Comparable outcomes to previous studies.

ART-ACLR

ART-ACLR w/ BTB

• Excellent subjective and objective outcomes in more than 95% of patients.³⁾

Better clinical outcomes expected after ART-ACLR w/ QTB by reduction in postoperative complications.

Conclusions

- There were no significant differences in patientreported outcomes, knee stability and re-injury between QTB and BTB autografts after ART-ACLR.
- QTB autografts were associated with reduced anterior knee pain compared to BTB autografts.

References

- 1) Shino K, et al. J Orthop Sci 2015; 20(3): 457-68.
- 2) Suzuki T, et al. Arthroscopy; 30(10): 1294-302.
- 3) Tachibana Y, et al. KSSTA 2019; 27(8): 2680-2690.
- 4) Shani RH, et al. Arthroscopy 2016; 32(1): 71-75.
- 5) Diermeier T, et al. KSSTA 2020; 28(8): 2644-2656.
- 6) DeAngelis JP, et al. Clin Sports Med 2007;26(4):587-96.
- 7) Geib TM, et al. Arthroscopy 2009;25(12):1408-14.