

Reliability of Preoperative Planning Method That Considers Latent Medial Joint Laxity in Medial Open-Wedge high Tibial Osteotomy

Dong Jin Ryu,* MD, PhD, Sung-Sahn Lee,* MD, PhD, Eui Yub Jung,[‡] MD, MS, Joon Hollong,[§] MD, PhD

*Department of Orthopaedic Surgery, Inha University Hospital, Incheon, Republic of Korea. [†]Department of Orthopaedic Surgery, Ilsan Paik Høspital, Inje University School of Medicine, <u>Goyang-si, Republic of Korea.</u> [‡]Department of Orthopaedic Surgery, National Medical Center, Seoul, Republic of Korea. [§]Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University

School of Medicine, Seoul, Republic of Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Introduction

- Medial open-wedge High tibial osteotomy (MOWHTO)
 - : established procedure for early medial OA in relatively active patients.
- Although several techniques for preoperative correction planning to obtain accurate alignment, **unexpected correction errors** remain **unresolved**.
- <u>The factors associated with coronal correction</u> errors in MOWHTO are <u>still unclear</u>.
- Soft tissue laxity recognized as a <u>crucial factor</u> affecting correction error.
- <u>Medial joint laxity</u>
 - : represents the changes in *joint line convergence angle (JLCA)*, affects soft tissue correction.

Purpose

• (1) **Quantify medial laxity** and develop a preoperative planning method that

considers medial laxity

• (2) **Develop an equation** to reduce coronal correction error in terms of preoperative medial soft tissue laxity.

* Hypothesis

: conventional *Miniaci preoperative planning* method *has a risk of overcorrection* for

MOWHTO as <u>compared with a method for <u>medial soft tissue laxity reduction planning</u>.</u>

<u>Methods</u>

* Study design / Subject

- 117 patients (139 knees)
- Conventional Miniachi (47 knees), Latent medial laxity reduction (92 knees)

* Surgical procedure

- Targeted postoperative mechanical axis (MA) was 3° valgus
- Biplane MOWHTO was done
- acceptable correction : valgus range of 1.5 to 4.5°
- overcorrection: > valgus 4.5°
- undercorrection: < valgus 1.5°

5

* Preoperative planning (Miniachi & Latent medial laxity reduction (LMLR) method)

* Demographics & post OP mechanical axis

Characteristics and Radiographic Parameters ^a				
	Knees, Mean (Range)			
	$Total \left(N=139 \right)$	Miniaci Method (n = 47)	LMLR Method $(n = 92)$	P Value
Age, y	54.4 (33 to 65)	53.66 (33 to 64)	54.78 (36 to 65)	.378
Male:female ^b	48:91	13:34	35:57	.223
MA on standing XR, deg ^c				
Preoperative	-8.46 (-5.0 to -18.8)	-7.83 (-5.1 to -12.7)	-8.78 (-5.0 to -18.8)	.071
6-mo postoperative	3.97 (-1.5 to 10.4)	4.87 (-1.5 to 9.8)	3.51 (-1.1 to 10.4)	.001
JLCA, deg ^c				
On standing-leg XR	-3.52 (-12.8 to 1.1)	-3.24 (-8.4 to -0.2)	-3.67 (-12.8 to 1.1)	.255
On valgus stress XR	1.13 (-2.2 to 7.6)	1.19 (-1.5 to 5.7)	1.10 (-2.2 to 7.6)	.768
On varus stress XR	-5.18 (-12.1 to -0.9)	-4.88 (-8.7 to -0.9)	-5.34 (-12.1 to -1.0)	.162
$\Delta JLCA_{valgus}, deg^c$	4.66 (0.8 to 16.8)	4.44 (0.8 to 10.1)	4.78 (1.2 to 16.8)	.428
$\Delta JLCA_{varus} deg^c$	-1.67 (-4.4 to 0.7)	-1.63 (-3.3 to -0.3)	-1.68 (-4.4 to 0.7)	.809
RCA, deg	9.94 (6.0 to 20.0)	10.23 (6.0 to 16.0)	9.79 (6.0 to 20.0)	.338
TCA, deg	11.46 (8.0 to 21.80)	10.83 (8.1 to 15.7)	11.78 (8.0 to 21.8)	.071

^aBold P value indicates statistically significant difference between methods (P < .05). JLCA, joint-line convergence angle; Δ JLCA, difference in JLCA between standing and valgus stress radiograph; LMLR, latent medial laxity reduction; MA, mechanical axis; RCA, real correction angle; TCA target correction angle; XR, radiograph.

^bNo. of knees.

"Positive values denote valgus alignment, and negative values denote varus alignment.

• The Miniaci method showed a higher incidence of overcorrection

than the LMLR method at postoperative 6 months (P = .0006)

Acceptable Overcorrect Undercorre

^aBold P value indicates statistically significant difference between methods (P < .05). LMLR, latent medial laxity reduction. ^bDefined as mechanical axis within a valgus range of 1.5° to 4.5°.

		-		
	Total	Miniaci Method	LMLR Method	P Value
ò	84	19	65	.0006
tion	47	26	21	
ction	8	2	6	

Postoperative Mechanical Axis Outcomes After Each Planning Method^a

Results

	Metho	d, n (%)	Bus	
∆JLCA _{valgus}	Miniaci	LMLR	P Valu	
>5.5°			.0008	
Acceptable correction	3 (21.4)	25 (73.5)		
Overcorrection	11 (78.6)	9 (26.5)		
<5.5°			.017	
Acceptable correction	16 (51.6)	40 (76.9)		
Overcorrection	15 (48.4)	12 (23.1)		

^aBold P values indicate statistically significant difference between methods (P < .05). JLCA, joint-line convergence angle; AJLCA, difference in JLCA between standing-leg and valgus stress radiographs; LMLR, latent medial laxity reduction.

Multiple Lin of the Re	ear Regr al Correc	ession Ar	nalysis de ^a	
	Unstandardized Coefficients		Standardized Coefficients	
V: Explicative Variable	B	SE(B)	В	P Value
CA Constant	0.596	0.376		.117
TCA ΔJLCA _{valgus}	0.891 0.255	0.036 0.046	1.005 -0.221	<.0001 <.0001

 ${}^{a}R = 0.942, R^{2} = 0.888$, adjusted $R^{2} = 0.885; P < .05$. Bold P values indicate statistical significance (P < .05). DV, dependent variable; JLCA, joint-line convergence angle; AJLCA, difference in JLCA between standing-leg and valgus stress radiographs; RCA, real correction angle; TCA, target correction angle.

Intermethod IC	CV
Versus I	deal

DV: Explicative Variable
Regression value
Miniaci
TCA - AJLCAvalgus
TCA - ½AJLCAvalgus
TCA - 1/2 AJLCAvalgus

"DV, dependent variable; ICC, intraclass correlation coefficient; JLCA, joint-line convergence angle; AJLCA_{valgus} difference in JLCA between standing-leg and valgus stress radiographs; TCA, target correction angle. ^bEach ICC value, P < .0001.

- Multiple linear regression with a stepwise selection model revealed a high correlation coefficient
 - : Adjusted planned correction angle = 0.596 + 0.891 x Target correction angle 0.255 x \triangle JLCA_{valgus}
- Upon simplification equation showed the highest inter-method ICC value (0.991)
- : Target correction angle 1/3 \(\]JLCA_{valgus}

while the Miniaci method showed a relatively low ICC value of 0.87

alues of Each Simplified Formula Correction Angle Method^a

Intermethod ICC (95% CI)^b

0.881(0.822 - 0.921)0.819(0.733 - 0.879)0.976 (0.964-0.985) 0.992 (0.988-0.995)

Discussions

• *Miniaci method* has a tendency for *coronal overcorrection*, especially for those with

high-grade latent medial laxity (Δ JLCA_{valgus} >5.5°).

Preoperative correction planning that considers latent medial laxity should be used.

Adjusted preoperative planning correction angle $= 0.596 + 0.891 \times TCA - 0.255 \times \Delta JLCA_{valgus}$ or, alternatively, $TCA - \frac{1}{3}\Delta JLCA_{valgus}$.

• JLCA could be changed by shifting the weight-bearing axis from medial to lateral and

by stretching the medial soft tissue.

• large change in JLCA from before and after MOWHTO may suggest alignment overcorrection.

Ogawa et al. AOTS. 2016

Lee DH et al. KSSTA. 2016

Discussions

- *Preoperative valgus stress* can mimic the postoperative valgization status of the proximal tibia.
- Consensus on the effect of medial laxity and varus angular deformity on overcorrection, but the relevance of latent lateral laxity is still controversial.
- Although there is no clear study on the *quantifying effect of medial laxity*,
 - 1° of valgus overcorrection was related to every 2.5° of JLCA.
 - <u>1.3°</u> is almost equal to a mean <u>JLCA change of 1.2°</u>.
- Considering these values, we developed a *simple formula* of subtracting

one-half or one-third of the JLCA from the TCA. ISAKOS

Lee DK et al. KSSTA. 2020

Kim SH, Knee, 2017

Park JG, KSSTA, 2020

Conclusions

- The conventional *Miniaci method* has the *risk of coronal overcorrection* after MOWHTO.
- An equation that *considers medial laxity* can facilitate a preoperative plan for optimal correction during MOWPTO.

References

- 1) Akamatsu Y, Mitsugi N, Mochida Y, et al. Navigated opening wedge high tibial osteotomy improves intraoperative correction angle com pared with conventional method. Knee Surg Sports Traumatol Arthrosc. 2012;20(3):586-593.
- 2) Kim MK, Ko BS, Park JH. The proper correction of the mechanical axis in high tibial osteotomy with concomitant cartilage procedures a retrospective comparative study. J Orthop Surg Res. 2019;14(1): 281.
- 3) Kim SH, Ro D-H, Lee Y-M, Cho Y, Lee S, Lee M-C. Factors associated with discrepancies between preoperatively planned and postoperative alignments in patients undergoing closed-wedge high tibial osteotomy. Knee. 2017;24(5):1129-1137.
- 4) Kyung BS, Kim JG, Jang K-M, et al. Are navigation systems accurate enough to predict the correction angle during high tibial osteotomy? Comparison of navigation systems with 3-dimensional computed tomography and standing radiographs. Am J Sports Med. 2013; 41(10):2368-2374.
- 5) Laprade RF, Bernhardson AS, Griffith CJ, Macalena JA, Wijdicks CA. Correlation of valgus stress radiographs with medial knee ligament injuries: an in vitro biomechanical study. Am J Sports Med. 2010; 38(2):330-338.
- 6) Lee D kyung, Wang JH, Won Y, et al. Preoperative latent medial laxity and correction angle are crucial factors for overcorrection in medial open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2020;28(5):1411-1418.
- 7) Ogawa H, Matsumoto K, Ogawa T, Takeuchi K, Akiyama H. Preoperative varus laxity correlates with overcorrection in medial opening wedge high tibial osteotomy. Arch Orthop Trauma Surg. 2016; 136(10):1337-1342.

