

Microfragmentation for processing stem cells from adipose tissue is promising when compared to enzymatic digestion for the treatment of osteoarthritis

Jasmin Bagge, Per Hölmich, Jan Nehlin, Lars Blønd, Lisbet R. Hölmich, and Kristoffer W. Barfod

Hvidovre Hospital Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery

Disclosure

The authors declare that they have no conflict of interest

Hvidovre Hospital Sports Orthopedic Research Center - Copenhagen (SORC-C), <u>Department of</u> Orthopedic Surgery

Bagge et al.

Images from guardianpain.com, Bioventus

Hvidovre Hospital

Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery Bagge et al.

Images from guardianpain.com, Bioventus

Hvidovre Hospital

Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery

Bagge et al.

Images from guardianpain.com, Bioventus

SORC-C

Stem Cells

Stem cells are part of the bodys normal **repair mechanism**.

Function via6:

- Differentiation
- Activation of progenitor cells
- Immunomodulation

Can be Isolated from various tissues

Adipose tissue

- Easy accessible
- Local analgetics
- High quantity of stem cells

Hvidovre Hospital

Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery

Bagge et al.

Figure from Wang et al. 2014

SORC-C

Sports Orthopedic Research Center - Copenhage

Hvidovre Hospital Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery

Bagge et al.

UNIVERSITY OF

COPENHAGEN

Objective

To assess **quantity** and **viability** of **stem cells** from adipose tissue when processed with **microfragmentation** compared to standard **enzymatic digestion**.

Materials: Adipose tissue from 15 knee osteoarthritis patients, age (mean (SD) 50.9 (8.5))

Hvidovre Hospital Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery

Cell Counting and Viability of Nucleated Cells

Nucleated cells:

Enzymatic digestion 3.9x10⁶/mL (2.5x10⁶/mL) Microfragmentation 1.0x10⁶/mL (0.5x10⁶/mL)

p<0.01

SORC-C

thonedic Research Center - Conenhae

Total nucleated cell viability: Enzymatic digestion 90% (SD 4%) Microfragmentation 80% (SD 6%)

p<0.01

REGION

Hvidovre Hospital Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery ******}

UNIVERSITY OF

COPENHAGEN

Enzymatic digestion

Microfragmentation

Quantity and Viability of Stem Cells

Flow cytometry \rightarrow gating on stem cells

Higher stem cell content per total nucleated cell count forMicrofragmentation 10% (SD 2%)Enzymatic digestion 6% (SD 2%)p<0.01</td>No significant difference in viability forMicrofragmentation 84% (SD 3%)Enzymatic digestion 82% (SD 4%)p=0.17

Hvidovre Hospital

Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery

Stem Cell Types

Stem cell types identified in microfragmented adipose tissue:

- Adventitial stem cells (ASCs) (CD31⁻/CD45⁻/CD34⁺/CD146⁻)
- Pericytes (CD31⁻/CD45⁻/CD34⁻/CD146⁺)
- Mesenchymal stem cells (CD34⁻/CD45⁻/CD146⁻/CD90⁺/CD105⁺)
- CD271+ stem cells (CD31-/CD45-/CD90+/CD271+)

Hvidovre Hospital

Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery Bagge et al.

Image from Science News

Conclusion

Microfragmentation is a promising method to process clinically relevant stem cells for the treatment of osteoarthritis

Hvidovre Hospital

Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery

Thank you for your attention

Jasmin Bagge (PostDoc, DVM, PhD, PhD – Department of Orthopedic Surgery – Hvidovre Hospital)

Per Hölmich (Professor, MD, DMSc – Department of Orthopedic Surgery – **Hvidovre Hospital**)

Jan O. Nehlin (Senior Scientist, DMSc, Cand.Scient – Department of Clinical Research – Hvidovre Hospital)

Funding: The Danish Rheumatism Association The Hartmann Foundation RegionH PostDoctoral Fellowship IOC Research Center - Copenhagen

Lisbet R. Hölmich (Professor, MD, DMSc – Department of Plastic Surgery – Herlev Hospital)

Lars Blønd (MD – Department of Orthopedic Surgery – Køge Hospital)

Kristoffer W. Barfod (Associate Professor, MD, PhD – Department of Orthopedic Surgery – Hvidovre Hospital)

Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery

References

¹ Kloppenburg M, Berenbaum F (2020): Osteoarthritis year in review 2019: epidemiology and therapy, Osteoarthritis and Cartilage, Vol 28, pp. 242-248

² Barfod KW, Blønd L (2019): Treatment of osteoarthritis with autologous and microfragmented adipose tissue, *Danish Medical Journal*, Vol 66:10, pp. A5565

³ Screpis D, Natali S, Farinelli L *et al.* (2022): Autologous Microfragmented Adipose Tissue for the Treatment of Knee Osteoarthritis: Real-World Data at Two Years Follow-Up, *Journal of Clinical Medicine*, Vol 11:8, pp. 2231

⁴ Filardo G, Tschon M, Perdisa F *et al.* (2022): Micro-fragmentation is a valid alternative to cell expansion and enzymatic digestion of adipose tissue for the treatment of knee osteoarthritis: a comparative preclinical study, *Knee Surgery, Sports Traumatology, Arthroscopy*, Vol 30:3, pp. 773-781

⁵ Matas J, Orrego M, Amenabar D *et al.* (2019): Umbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC Dosing Is Superior to a Single MSC Dose and to Hyaluronic Acid in a Controlled Randomized Phase I/II Trial, *Stem Cells Translational Medicine*, Vol 8:3, pp. 215-224

⁶ Wang Y, Chen X, Cao W, Shi Y (2014): Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications, *Nature Immunology*, Vol 15:11, pp. 1009-1016

Hvidovre Hospital Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery

Bagge et al.