

ISAKOS 14th Biennial Congress 2023

INFLUENCE OF MINI APPROACH INSTRUMENTATION ON COMPONENT ALIGNMENT IN UNICONDYLAR KNEE REPLACEMENT (ABSTRACT # 22057)

PRESENTING AUTHOR: DR. VINOD KUMAR <u>CO-AUTHOR</u>: DR. DEEPAK GUPTA, DR. ANANYA SHARMA DEPARTMENT OF ORTHOPAEDICS, MAULANA AZAD MEDICAL COLLEGE, NEW DELHI, INDIA

ISAKOS 14th Biennial Congress 2023 Presenters Financial Disclosure

I (or a member of my immediate family) **do not** have a financial interest or other relationship with a commercial company related directly or indirectly with the ISAKOS 14th Biennial Congress 2023.

INTRODUCTION

- ▶ In 1998, Oxford UKR (Unicondylar Knee Replacement) Phase 3 knee with fully congruous mobile bearing was introduced with Minimal Invasive Instrumentation.
- The prognosis of Unicondylar Knee Replacement is strongly associated with the accuracy of the implant placement.
- ► The minimally invasive approach obscures surgical landmarks and hence makes intraoperative orientation and positioning of the components difficult.
- ► The MIS approach uses a small incision and limited exposure without dislocation of patella. This leaves quadriceps tendon intact and is beneficial for fast recovery.
- Recovery was 2 times as rapid in the minimally invasive group versus the standard UKA group and 3 times as rapid versus the standard TKA group.

AIM OF THE STUDY

► To evaluate the accuracy of implant placement using mini approach instrumentation for mobile bearing Oxford Unicondylar Knee Replacement (UKR).

Femur	Normal Range	Tibia	Normal Range
1. Varus/ Valgus	< 10° Varus < 10° Valgus	1. Varus/ Valgus	< 5º Varus < 5º Valgus
2. Flexion/extension	<10° Flexion— <5° Extension		
		2. Postero-inferior slope	7° +or -5°
3. Medial/ lateral placement	Central		
4 Desterier fit		3. Medial fit	Flush or < 2mm
4. Posterior fit	Posterior fit Flush or < 4mm overhang		overhang
Meniscal bearing		4. Posterior fit	Flush or < 2mm
X-ray marker central, and parallel with the tibial component			overhang
		5. Anterior fit	Flush or < 5mm short

MATERIALS AND METHODS

- It was an Interventional Prospective clinical study with 33 knees of Medial compartment osteoarthritis.
- Varus/ Valgus of femoral and tibial components were measured relative to long axis of tibia on AP view.

Demonstrate Varus placement of Femoral Component (<u>A</u>- Long Axis of Tibia, <u>B</u>- Line Parallel to long axis of Tibia, C- Long Axis of Femoral component)

Demonstrate Varus placement of Tibial Component (<u>A</u>- Long Axis of Tibia, <u>B</u>- Line perpendicular to long axis of Tibia, C-Line parallel to border of Tibial Component)

MATERIALS AND METHODS

Flexion/extension of femoral & tibial component was measured relative to posterior cortex respectively on lateral view.

Demonstrate Tilt of tibial Component

(<u>A</u>-Line parallel to posterior Tibial cortex, <u>B</u>-Line perpendicular to posterior tibial cortex, <u>C</u>-Line parallel to femoral component)

Demonstrate Flexion position of Femoral Component

(<u>A</u>-Line parallel to posterior femoral cortex, <u>B</u>-Line parallel to peg of femoral component)

RESULTS

Femoral Component	Mean (Range)	Normal Range	SD
Varus /Valgus	4.21° varus (3.3° valgus -8.6° varus)	<10° varus - <10° valgus	2.98
Flexion /Extension	7.21º flexion (1.2º flexion-14.4º flexion)	<10° flexion – < 5° extension	4.30
Medial/Lateral fit (mm)	0.82 lateral (1 mm medial to 5 mm lateral)	central	-
Posterior fit (mm)	0.73 overhang (1mm short to 2.5mm overhang)	Flush or < 4mm overhang	-

RESULTS

Tibial Component	MeanNormal(Range)Range		SD
Varus/ Valgus	5.8° varus (3° valgus - 13.2° varus)	<5º varus – < 5º valgus	3.89
Posteoinferior Tilt	3.6° superior tilt (5.4° inferior tilt – 9.1° superior tilt)	7º +or -5º	2.69
Medial fit (mm)	0.4 short Flush or < 2mi (2 short to flush) overhang		-
Anterior fit (mm)	0 (1 short to 1 overhang)	Flush or < 5 mm short	-
Posterior fit (mm)	0.2 short (3 short to 2 overhang)	Flush or < 2 mm overhang	-

DISCUSSION

All component of oxford UKR can be placed with high accuracy using mini-approach instrumentation.

Femoral central and Tibia Varus alignment has maximum error rate due to technical errors and learning surgical curve.

Functional outcomes of knees outside the recommended range of alignment of the components of UKR has been excellent.

DISCUSSION

Parameter	Shakespeare et al	Clarius et al	Gulati et al	Our Study
Femur	(Outliers/total)	(Outliers/total)	(Outliers/total)	(Outliers/ total)
1. Varus/Valgus	0/224, Mean=0.5° varus	*2/56, Mean=2.8 ⁰ varus	3/211, Mean=1.4 ⁰ varus	0/33, Mean= 4.21 ⁰ varus
2. Flexion/ Extension	18/224, Mean=0.2ºflexion	#18/56, Mean=2.1 ⁰ flexion	**40/211, Mean= 0.8 ⁰ ext	9/33, Mean= 7.21 ⁰ Flexion
3. Medial/ lateral placement	—	40/56, Mean=1.2mm medial	—	15/33, Mean= 0.82 mm lateral
4. Posterior fit	13/224, Mean= 0.8mm overhang	19/56, Mean =1.2mm overhang		3/33, Mean= 0.73 mm overhang
Tibia				
1. Varus/valgus	2/224, Mean=1.8º varus	\$1/56, Mean = 4.4 ⁰ varus	18/211, Mean=2.1 ⁰ varus	15/33, Mean= 5.8 ⁰ Varus
2. Posterior slope	0/224, Mean=5.7°	7/56, Mean = 6.1 ⁰	16/211, Mean=5.1º	9/33, Mean= 3.6° superior tilt
3. Medial fit	25/224, Mean=0.6 mm overhang	25/56,Mean=0.1mmunder hang	—	9/33, Mean= 0.4 mm short
4. Posterior fit	75/224, Mean=0.6 mm underhang	43/56, Mean =2mm underhang	—	9/33, Mean= 0.2 mm short
5. Anterior fit	24/224, Mean=0.4 mm underhang	^{&} 22/56, Mean =1.7mm underhang	—	3/33, Mean= Flush

*= acceptable range 10° valgus to 10° varus, # = acceptable range 5° flexion to 5° extension

= acceptable range 5⁰ valgus to 10⁰ varus, & = acceptable range exact fit to < 3mm shorter

** = acceptable range 10^0 flexion to 10^0 extension

CONCLUSION

Components of UKR i.e. Femoral component, Tibial component and Meniscal bearing can be placed with high accuracy using mini-approach instrumentation

Excellent results can be obtained with mini approach instrumentation with proper patient selection and with strict adherence to the surgical technique.

REFERENCES

- 1. Goodfellow JW, O'Connor JJ, Dodd C, Murray D. Unicompartmental Arthroplasty with Oxford knee. Oxford (United Kingdom). Oxford University Press; 2006.
- 2. Price AJ, Webb J, Topf H, et al: Rapid recovery after oxford unicompartmental arthroplasty through a short incision. J Arthroplasty. 2001 Dec; 16(8):970-6.
- 3. Müller PE, Pellengahr C, Witt M, Kircher J, Refior HJ, Jansson V. Influence of minimally invasive surgery on implant positioning and the functional outcome for medial compartmental knee arthroplasty. J Arthroplasty. 2004 Apr; 19(3):296-301.
- 4. Shakespeare D, Ledger M, Kinzel V. Accuracy of implantation of components in the oxford knee using minimally invasive approach. Knee. 2005 Dec; 12(6):405-9.
- 5. Gulati A, Chau R, Simpson DJ, Dodd CA, Gill HS, Murray DW. Influence of component alignment on outcome for unicompartmental knee replacement. Knee. 2009 Jun; 16(3):196-9.
- 6. Martínez-Victorio P, Sainz-Nolla MC, Garcia PP et al. Clinical and radiological assessment of unicompartmental knee prostheses implanted with a minimally invasive technique. Rev esp cir ortop traumatol. 2009 Apr; 53(3):146-56.
- 7. Clarius M, Hauck C, Seeger JB, Pritsch M, Merle C, Aldinger PR. Correlation of positioning and clinical results in oxford UKA. Int Orthop. 2010 Dec; 34(8):1145-51.
- 8. Pandit H, Hamilton TW, Jenkins C, Mellon SJ, Dodd CAF, Murray DW. The clinical outcome of minimally invasive Phase 3 Oxford unicompartmental knee arthroplasty- a 15-year follow up of 1000 UKAs. J Bone Joint Surg Br. 2015 Nov; 97-B:1493–500.

