

ISAKOS 14th Biennial Congress 2023

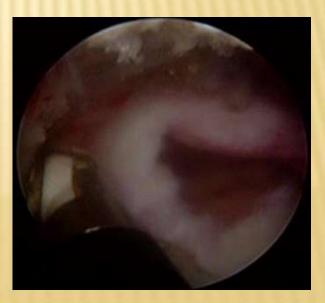
A PROSPECTIVE STUDY OF CLINICAL AND RADIOGRAPHIC OUTCOMES OF ARTHROSCOPIC REPAIR OF ROTATOR CUFF TEAR

(ABSTRACT # 22054)

Presenting Author: Dr. Vinod Kumar

<u>Co-Author</u>: Dr. Rakesh Sherawat, Dr. Ananya Sharma Department of Orthopaedics, Maulana Azad Medical College, New Delhi, India ISAKOS 14th Biennial Congress 2023 Presenters Financial Disclosure

I (or a member of my immediate family) **do not** have a financial interest or other relationship with a commercial company related directly or indirectly with the *ISAKOS 14th Biennial Congress 2023*.


INTRODUCTION

- × Rotator cuff tears common source of shoulder pain.
- Supraspinatus tendon- most commonly involved
- Conservative treatment
 - results inconclusive and unpredictable
 - never lead to tendon bone healing.
- Chronic symptomatic complete rotator cuff tears
 - surgical repair remains the treatment of choice.

PURPOSE OF STUDY

- To assess anatomic healing after arthroscopic rotator cuff repair using magnetic resonance imaging.
- To correlate functional outcome with anatomical healing of the repaired tendon.

MATERIALS AND METHODS

Interventional prospective study.

CASES: 24 Patients

INCLUSION CRITERIA

 Symptomatic degenerative full or partial thickness(≥50%) rotator cuff tears who failed conservative trial of 6 weeks.

Symptomatic acute traumatic full or partial thickness (≥50%) rotator cuff tears.

× EXCLUSION CRITERIA

- Symptomatic arthritic changes.
- Inflammatory or infective conditions.
 - Fractures around the shoulder joint.
 - Partial rotator cuff tears less than 50% in thickness.
- Full thickness tears not amenable to repair (fatty infiltration of Goutallier stage
 ≥ 4 MRI or retracted tendon that cannot be approx to anatomic footprint).
 - Any previous open shoulder surgery.

METHODOLOGY

Clinical functional scoring system:

Preoperatively

- Visual analogue pain (VAP) score
- American shoulder and elbow surgeons (ASES) shoulder score
- Constant-Murley Shoulder (CMS) score
- University of California Los
 Angeles (UCLA) shoulder score

Magnetic resonance imaging: plain MRI

- Preoperatively
- Confirmation of rotator cuff tear
- Type of tear : partial or complete
- Intramuscular fatty infiltration of rotator cuff muscles- Goutallier grading.
- Retraction of torn edge of rotator cuff tendon- Patte classification system
- Atrophy of rotator cuff muscles-
 - Warner classification

OPERATIVE PROCEDURE

OLERVIILE LLOCEDOI

• Four portals: posterior, posterolateral, lateral/antero-lateral and anterior portals.

A superolateral accessory portal.

Single row repair technique.

POST OPERATIVE MANAGEMENT

- Arm in a shoulder immobilizer for 4 weeks in 30 deg abduction.
- One day post op: passive flexion of shoulder joint and pendulum exercises

- Six weeks: active assisted range of motion
- Eight week: Rotator cuff muscles strengthening exercises
- **×** Three months: light sports activities.
- After six month: Full strength sports or labour allowed.

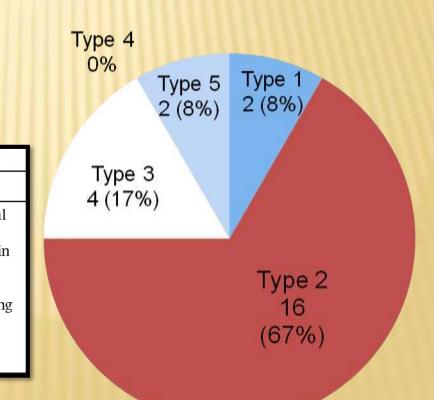
POSTOPERATIVE FOLLOW UP

- × VAP Score at 6 weeks, 3 months, 6 months and 1 year.
- Shoulder scoring systems (ASES, CMS, UCLA) at 3 months, 6 months and 1 year.
- × Plain MRI at 6 months:
 - + Integrity of repaired rotator cuff tendon- Sugaya et al.
 - Intramuscular fatty infiltration of rotator cuff muscles-Goutallier grading.
 - + Atrophy of rotator cuff muscles- Warner classification

RESULTS

CLINICAL (FUNCTIONAL) OUTCOME MEASUREMENTS

Score (mean ± SD)	Preop	Postop 6 wks	Post op 3 mo	Postop 6 mo	Postop 1 yr	P value
VAPS	6.67 ± 1.15	3.25 ± 1.21	1.25 ± 0.75	0.42 ± 0.67	0.39 ± 0.56	0.000
ASES	34.44 ± 12.31		80.42 ± 7.59	92.22 ± 7.89	94.16 ± 7.91	0.000
CMS	29.33 ± 7.25		62.75 ± 7.72	77.50 ± 7.83	86.46 ± 7.92	0.000
UCLA	10.08 ± 2.50		25.17 ± 2.58	31.42 ± 3.09	33.84 ± 3.27	0.000


RADIOGRAPHIC OUTCOME

Integrity of the repaired tendon on postop MRI :

- + Intact tendon : 22 (91.67%) patients
- + Full thickness retear: 2 (8.33%) patients

Sugaya Classification

Criteria developed by Sugaya et al. to evaluate tendon healing.					
Sugaya classifica	ation				
Туре І	Sufficient thickness, homogeneous tendon (low signal on T2 images)				
Туре II	Sufficient thickness, partial high-intensity from within the tendon				
Type III	Insufficient thickness without discontinuity				
Type IV	Minor discontinuity on more than one slice, suggesting a small tear				
Туре V	Major discontinuity suggesting a moderate or large tear				

CONCLUSION

- MRI is a good tool for postoperative evaluation of tendon healing.
- Patients with healed tendon have statistically better functional outcome than patients with retear.
- ✓ There is significant postoperative functional score improvement even in case of retear.

References

- Ying Z.M., Lin T. and Yan S.G. Arthroscopic single-row versus double-row technique for repairing arotator cuff tears: a systematic review and meta-analysis. *Orthop Surg.* 2014;6(4):300-12.
- Xu C., Zhao J. and Li D. Meta-analysis comparing single-row and double-row repair techniques in the arthroscopic treatment of rotator cuff tears. *J Shoulder Elbow Surg.* 2014;23(2):182-8.
- Tashjian R.Z., Granger E.K. and Chalmers P.N. Healing rates and functional outcomes after triple-loaded single-row versus transosseousequivalent double-row rotator cuff tendon repair. *Orthop J Sports Med.* 2018;6(11): 2325967118805365.
- Sobhy M.H., Khater A.H., Hassan M.R. and Shazly O.E. Do functional outcomes and cuff integrity correlate after single versus double row rotator cuff repair? A systematic review and meta-analysis study. *Eur J Orthop Surg Traumatol*. 2018;28(4):593-605.
- Lorbach O, Kieb M, Raber F, Busch L.C., Kohn D.M. and Pape D. Three-dimensional evaluation of cyclic displacement in single-row and double-row rotator cuff reconstructions under static external rotation. *Am J Sports Med* 2013;41:153-162.
- Barber F.A, Herbert M.A, Schroeder F.A, Jacobo J.A, Mays M.M, and Rapley J.H. Biomechanical advantages of triple-loaded suture anchors compared with double-row rotator cuff repairs. *Arthroscopy*. 2010;26(3):316-23.
- Yamakado K. A prospective randomized trial comparing suture bridge and medially based single-row rotator cuff repair in medium-sized supraspinatus tears. *Arthroscopy*. 2019;35(10):2803-13.
- Koh K.H., Kang K.C., Lim T.K., Shon M.S., and Yoo J.C. Prospective randomized clinical trial of single- versus double-row suture anchor repair in 2- to 4-cm rotator cuff tears: clinical and magnetic resonance imaging results. *Arthroscopy*. 2011; 27(4):453-62.
- Millett P.J., Warth R.J., Dornan G.J., Lee J.T., and Spiegl U.J. Clinical and structural outcomes after arthroscopic single-row versus double-row rotator cuff repair: a systematic review and meta-analysis of level I randomized clinical trials. *J Shoulder Elbow Surg.* 2014;23(4):586-97.

