ISAKOS Congress 2023



# The Effect Of Medial Closing Wedge Distal Femoral Varus Osteotomy On Contact Stress Distribution Pattern Of The Femorotibial Joint

<sup>1</sup>Masanari Hamasaki, <sup>2</sup>Eiji Kondo, <sup>3</sup>Koji Yabuuchi, <sup>4</sup>Koji Iwasaki, <sup>1</sup>Yuki Suzuki, <sup>1</sup>Masatake Matsuoka, <sup>1</sup>Tomohiro Onodera, <sup>3</sup>Kazunori Yasuda, <sup>3</sup>Tomonori Yagi, <sup>1</sup>Norimasa Iwasaki
<sup>1</sup>Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
<sup>2</sup>Center for Sports Medicine, Hokkaido University Hospital, Sapporo, Japan
<sup>3</sup>Department of Orthopaedic Surgery, Yagi Orthopaedic Hospital, Sapporo, Japan
<sup>4</sup>Department of Functional Reconstruction for the Knee Joint, Faculty of Medicine, Hokkaido University, Sapporo, Japan **COI** Disclosure Information

HAMASAKI Masanari

My disclosure along with my co-authors is listed in the disclosure index on the ISAKOS website.

I have no conflicts.



## Distal Femoral varus Osteotomy (DFO)

 A well-established treatment option for patients with valgus malalignment

Weil et al KSSTA 2017

- Medial closing wedge (M) -DFO
  - A useful procedure in patients with meniscus deficiency, focal chondral defects and OA in lateral compartment
     Sheehan et al JAAOS 2017
- Cadaveric studies have confirmed the role of M-DFO in correcting the mechanical axis of the lower limb and unloading the lateral compartment.
  - No in vivo studies have been conducted to clarify
     Quirno et al KSSTA 2017
     the stress distribution patterns of the FT joint after M-DFO.







The distribution pattern of subchondral bone density reflects the distribution of the stress acting on the joint surface under actual loading conditions. CT-osteoabsorptiometry (OAM)

 An analytical method for assessment of the stress distribution at joints through the subchondral bone density

Muller-Gerbl et al Skeletal Radiol 1989, J Bone Miner Res 1992



 A useful method for evaluation of *in vivo* stress distribution of various joints



## Hypothesis

• M-DFO alters the stress distribution across the articular surface of FT joint.

### Purpose

 To evaluate change in the distribution pattern of subchondral bone density of the FT joint in patients with valgus knee before and after M-DFO



#### Methods

#### Study design

- 13 patients (14 knees): 2016-2020
  - ✓ M-DFO for lateral compartment OA or SONK
  - ✓ 2 men, 11 women
  - ✓ 43 (14-73) years
- Clinical and radiological examinations were performed before and 2 years after surgery.
  - Radiographic evaluation
    - ✓ HKA, FTA, mechanical axis (MA), mLDFA
    - 🗸 CT
- Statistical analysis
  - Paired Student t-test
  - *p* = 0.05





#### Methods

### Surgical procedure



Kaibara et al. JOS 2021



HOKKAIDO UNIVERSITY

#### Methods

## CT-OAM

- Hounsfield units were measured using our original software.
- A distribution map was created.
- The upper 30% area in Hounsfield units value on the medial and lateral compartments was defined as the <u>High bone Density Area</u> (HDA).
- Both the medial and lateral compartments of the proximal tibia were divided into 4 subregions.
  - $\checkmark$  The %HDA in each subregion was analyzed.



## Radiological evaluations

|                                                                                                                                                  | Pre-operative | Post-operative | P value |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|---------|
| Correction angle<br>(degree)                                                                                                                     | N/A           | 7.1 (1.5)      |         |
| HKA (degree)                                                                                                                                     | 6.3 (4.9)     | -1.9 (3.0)     | <0.001  |
| FTA (degree)                                                                                                                                     | 168.2 (4.3)   | 176.6 (3.6)    | <0.001  |
| MA (%)                                                                                                                                           | 74.6 (19.5)   | 38.0 (12.7)    | <0.001  |
| mLDFA (degree)                                                                                                                                   | 81.7 (4.0)    | 89.4 (3.7)     | <0.001  |
| HKA, hip-knee-ankle angle FTA, Femoral tibial angleMean (SD)MA, mechanical axis mLDFA, mechanical lateral distal femora angleN/A: Not applicable |               |                |         |
| Clinical evaluations                                                                                                                             |               |                |         |
|                                                                                                                                                  | Pre-operative | Post-operative | P value |
| Lysholm score (points)                                                                                                                           | 58.7 (19.8)   | 87.4 (7.0)     | 0.0014  |
| JOA score (points)                                                                                                                               | 64.9 (14.6)   | 87.2 (8.5)     | <0.001  |



JOA, Japanese Orthopedec Association Aoki et al JBJS Br 2006

Mean (SD) N/A: Not applicable



Results

In CT-OAM evaluation, the %HDA of the L2, 3 and 4 regions were significantly decreased after M-DFO surgery.

In contrast, the %HDA of the M2, 3, and 4 regions were significantly increased after surgery







- Clinical scores significantly improved after M-DFO.
- Using CT-OAM, M-DFO significantly decreased %HDA in the lateral compartment and increased %HDA in the medial compartment.
  - ✓ These results indicated that <u>M-DFO shifted the stress of the lateral</u> <u>compartment of the proximal tibia toward the medial compartment.</u>







#### Discussion

- The goal of correction angle of valgus HTO has been well studied and established.
   *Fujisawa et al Clin Orthop North Am 1979*
- The goal of varus correction angle of the knee remains unknown.
- Favorable clinical outcomes in varus DFO were reported to be obtained in the alignment within MA of 36-43%.

Shivji et al. KSSTA 2021

- In this study
  - ✓ MA was 38% and HKA -2 degrees.
  - ✓ Clinical scores significantly improved.



*Fujisawa et al Clin Orthop North Am 1979* 



Forkel et al KSSTA 2014



- In cadaveric study
- DFO decreased lateral compartment pressure.
- Progressive unloading of the lateral compartment occurred with increasing DFO correction angles.



Wylie et al Am J Sports 2018 Quirno et al KSSTA 2017

This study clarified *in vivo* stress distribution patterns of the FT joint were significantly shifted from medial to lateral by the M-DFO.



- This study showed in vivo stress distribution patterns of the FT joint before and after M-DFO using CT-OAM method by subchondral bone density.
- M-DFO significantly shifted stress distribution patterns of the lateral FT joint in patients with valgus malalignment.

