

Magnetic Resonance Imaging Overestimates Patellar Height Compared with Radiographs

Juan Pablo Martinez-Cano, MD, MSc, PhD, Cali, Valle del Cauca COLOMBIA Riccardo Gomes Gobbi, MD, PhD, São Paulo, SP BRAZIL

Pedro N. Giglio, MD, São Paulo, SP BRAZIL

Elizabeth A. Arendt, MD, Minneapolis, MN UNITED STATES

Giovanna Babikian Costa, MD, São Paulo, SP BRAZIL

Betina B. Hinckel, MD, PhD, Troy, MI UNITED STATES

The authors do not have any disclosures related with this research

Aim

- To evaluate interobserver and inter-method reliability for patellar height measurements between CR and MRI using one slice or two slices in patients with patellar instability and in a control group
- The secondary objective was to explore if lateral patellar tilt or lateral patellar translation affected the reliability of the MRI measurements

Methods

- Patients from Clinics Hospital of Sao Paulo between January 2008 and March 2020, reliability study
- 60 patients (10-50 years) divided in two groups: 30 patients with patellar instability (patella group) and 30 patients with anterior cruciate ligament or meniscus injury (control group)
- CR and MRI were evaluated by two independent observers
- Insall-Salvati index (IS) and Caton-Deschamps index (CD) were measured using three different methods: CR, 1-slice MRI or 2-slices MRI
- Intra-class correlation coefficients (ICC) were calculated for inter-observer reliability and inter-method reliability, Bland-Altman agreement was calculated

Methods

Lateral radiograph

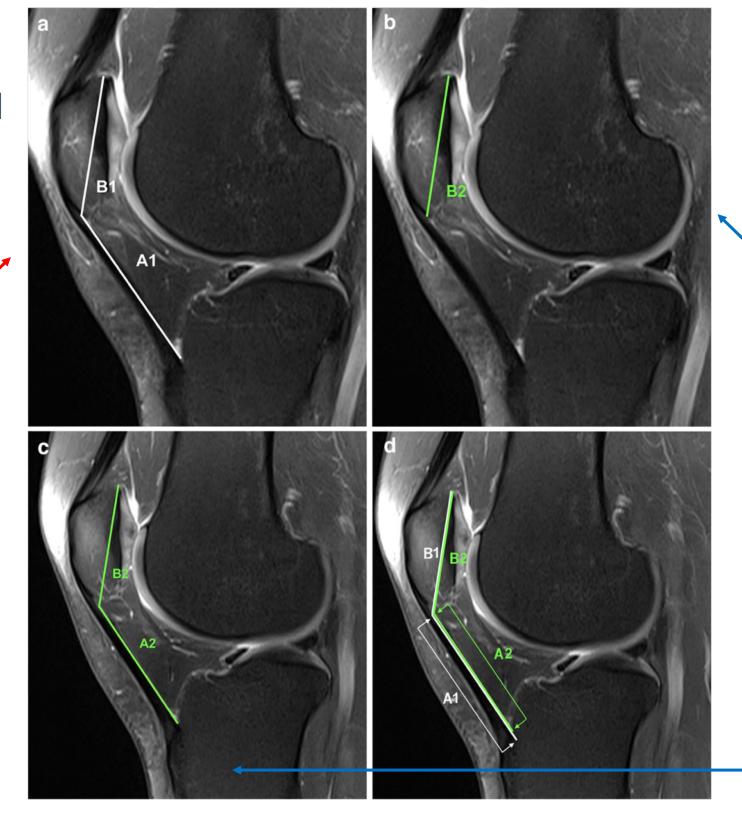
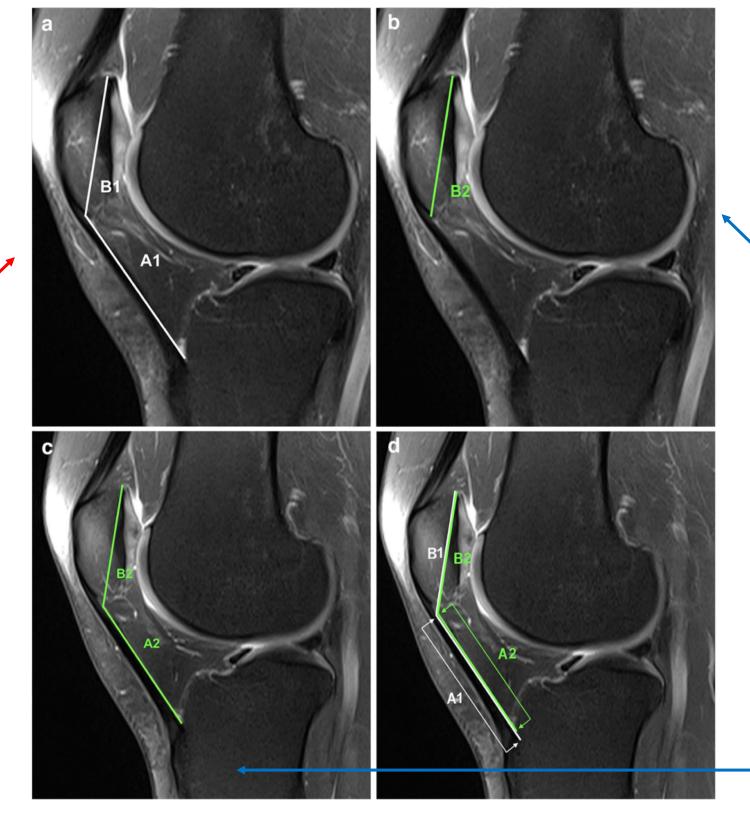


Fig. 1 Conventional radiographs, lateral view. Insall–Salvati (IS) and Cato–Deschamps (CD) index measurements. A patellar tendon length, B patellar length, C distance from the patella to the tibia and D patellar cartilage length. IS: A/B and CD: C/D

Insall-Salvati in MRI with one and two-slices

Intermediate Intermediate slice where both patella and tendon were seen better

Methods


2 slices:

Where the patella had the greatest length (copy the line)

The center of the patellar tendon

in MRI with one and two-slices

Sagital slice where the patella has the greatest cartilage length

Methods

2 slices: Where the patella had the greatest cartilage length (copy the line)

Sagital slice where the ACL is best seen

- The inter-observer reliability was **very good** for the **IS**, ICCs:
 - CR = 0.93
 - 1-slice MRI = 0.84
 - 2-slices MRI = 0.82
- The inter-observer reliability was **good** for **CD**, ICCs:
 - CR = 0.76
 - 1-slice MRI = 0.80
 - 2 slices-MRI = 0.75

 Table 2
 Inter-observer reliability: ICC (95% CI)

	CR	MRI one slice	MRI two slices
IS	0.93 (0.87–0,96)	0.84 (0.19-0.95)	0.82 (0.25–0.94)
CD	0.76 (0.56–0.87)	0.80 (0.65–0,88)	0.75 (0.61–0.84)

ICC intra-class correlation coefficient; 95% CI 95% confidence interval; CR conventional radiography; MRI magnetic resonance imaging; IS Insall-Salvati index; CD Caton-Deschamps index

- Inter-method analysis
- ICCs for IS
 - CR/1-slice MRI = 0.83
 - CR/2-slices MRI = 0.86
- ICCs for CD
 - CR/1-slice MRI = 0.72
 - CR/2-slices MRI = 0.82

Table 3 Inter-method reliability: ICC (95% CI)

	CR/MRI one slice	CR/MRI two slices	MRI one slice/ MRI two slices
IS	0.83 (0.45-0.93)	0.86 (0.55–0.94)	0.93 (0.88–0.95)
CD	0.72 (0.45–0.85)	0.82 (0.72–0.89)	0.83 (0.45–0,.3)

ICC intra-class correlation coefficient; 95% CI 95% confidence interval; CR conventional radiography; MRI magnetic resonance imaging; IS Insall-Salvati index; CD Caton-Deschamps index

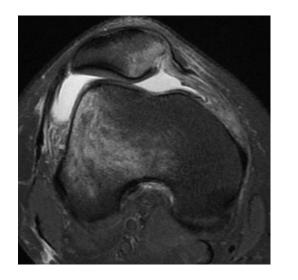
The Bland-Altman mean differences showed an **8%** and a **7%** increase on **IS** values with 1-slice MRI and 2-slices MRI compared to CR results

The increase was of **9%** and **1%** in **CD** for the respective comparisons with CR

Table 6 Inter-method degree of agreement according to Bland–Altman analysis: mean differences (limits of agreement)

	MRI one slice vs CR	MRI two slices vs CR	MRI one slice/ MRI two slices
IS	0.10 (±0.25)*	$0.08 (\pm 0.20)$ *	$0.02 (\pm 0.20)$
CD	$0.10 \ (\pm \ 0.32)^*$	$0.01~(\pm 0.27)$	$0.09\ (\pm0.20)*$

CR conventional radiography; MRI magnetic resonance imaging; IS Insall-Salvati index; CD Caton-Deschamps index


No differences between patellar instability group and control group

^{*}Statistically significant difference

- Lateral patellar translation was an independent factor in predicting differences between CR and MRI (1-slice method) for Insall-Salvati
 - For 1 mm of lateral translation the mean difference in IS between CR and MRI increased by 0.011
 - A lateral patellar translation of 9 mm would result in a clinically important increase of 0.1 in the IS mean difference between CR and 1-slice MRI

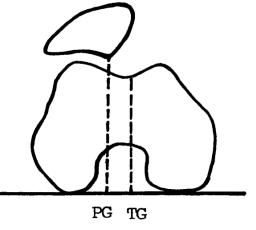


Fig 22. Measure of patellar subluxation.

Conclusion

- MRI can overestimate patellar height compared to CR, as much as an 8% increase in Insall-Salvati values when using 1 or 2-slices MRI measurements, and up to a 9% increase in Caton-Deschamps value when using the 1-slice MRI method
- It is recommended to continue using **CR** when measuring **patellar height** as the <u>preferred technique</u>
- The 2-slices MRI is a valid way of measuring patellar height with CD on MRI, as it increases only 1% the value compared to radiograph

References

• Caton J, Deschamps G, Chambat P, Lerat J, Dejour H (1982) Patella infera. Apropos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot 68:317—325.

- Insall J, Salvati E (1971) Patella position in the normal knee joint. Radiology 101:101—104.
- Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19—26.
- Lee PP, Chalian M, Carrino JA, Eng J, Chhabra A (2012) Multimodality correlations of patellar height measurement on X-ray, CT, and MRI. Skeletal Radiol 41:1309—1314.
- Verhulst FV, van Sambeeck JD, Olthuis GS, van der Ree J, Koëter S (2020) Patellar height measurements: Insall-Salvati ratio is most reliable method. Knee Surg Sports Traumatol Arthrosc 28:869–875.

